- P. Gandhi and S. A. Kassam, “Analysis of CFAR processors in nonhomogeneous background,”IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 4, pp. 427–445, 1988. DOI: https://doi.org/10.1109/7.7185.
- Dai, P. Wang, H. Wei, and Y. Xu, “Adaptive detection with constant false alarm ratio in a non-Gaussian noise background,” IEEE Commun. Lett., vol. 23, no. 8, pp. 1369–1372, 2019. DOI: https://doi.org/10.1109/lcomm.2019.2918816.
- Zhou and J. Xie, “Performance analysis of linearly combined order statistics CFAR processors in heterogeneous background,” IEEE Trans. Aerosp. Electron. Syst., pp. 1–10, 2023. DOI: https://doi.org/10.1109/taes.2023.3339405.
- Chen, A. Chen, W. Liu, and X. Ma, “CFAR detection in nonhomogeneous Weibull sea clutter for skywave OTHR,”IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1–5, 2023. DOI: https://doi.org/10.1109/lgrs.2023.3313179.
- P. Gandhi and S. A. Kassam, “Optimality of the cell averaging CFAR detector,”IEEE Trans. Inf. Theory, vol. 40, pp. 1226–1228, 1994. DOI: https://doi.org/10.1109/18.335950.
- G. Hansen and J. H. Sawyers, “Detectability Loss due to Greatest-of Selection in a Cell Averaging CFAR,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, pp. 115-118, 1980.DOI: https://doi.org/10.1109/taes.1980.308885.
- Weiss, “Analysis of Some Modified Cell-Averaging CFAR Processors in Multiple-Target Situations," IEEE Trans. Aerosp. Electron. Syst., vol. AES-18, no. 1, pp. 102-114, Jan. 1982. DOI: https://doi.org/10.1109/taes.1982.309210.
- V. Trunk, “Range resolution of targets using automatic detectors,” EEE Trans. Aerosp. Electron. Syst., vol. AES-14, no. 5, pp. 750-755, Sept. 1978. DOI: https://doi.org/10.1109/taes.1978.308625.
- T. Rickard and G.M. Dillard, “Adaptive detection algorithm for multiple target situations,” EEE Trans. Aerosp. Electron. Syst., vol. AES-13, no. 4, pp. 338-343, July 1977. DOI: https://doi.org/10.1109/taes.1977.308466.
- Sim, J. Heo, Y. Jung, S. Lee, and Y. Jung, “FPGA Implementation of Efficient CFAR Algorithm for Radar Systems,” Sensors, vol. 23, no. 2, p. 954, 2023. DOI: https://doi.org/10.3390/s23020954.
- H. Kerbaa, A. Mezache and H. Oudira, “Improved Decentralized SO-CFAR and GO-CFAR Detectors via Moth Flame Algorithm,” 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE), M'sila, Algeria, 2022, pp. 1-5. DOI: https://doi.org/10.1109/icateee57445.2022.10093725.
- P. Jiménez Jiménez, F. D. A. García, M. C. L. Alvarado, G. Fraidenraich and E. R. d. Lima, “A General CA-CFAR Performance Analysis for Weibull-Distributed Clutter Environments,” IEEE Geosci. Remote Sens. Lett., , vol. 19, pp. 1-5, 2022. DOI: https://doi.org/10.1109/lgrs.2022.3187554.
- C. Luna Alvarado, F. D. A. García, L. P. J. Jiménez, G. Fraidenraich, and Y. Iano, “Performance evaluation of SOCA CFAR detectors in Weibull-distributed clutter environments,”IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.
- Rohling, “Radar CFAR thresholding in clutter and multiple target situations,”IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, pp. 608–621, 1983. DOI: https://doi.org/10.1109/taes.1983.309350.
- Guida, M. J. Longo, and M. Lops, “Biparametric CFAR procedures for lognormal clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 29, pp. 798–809, 1993. DOI: https://doi.org/10.1109/7.220931.
- Rifkin, “Analysis of CFAR performance in Weibull clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 30, pp. 315–329, 1994. DOI: https://doi.org/10.1109/7.272257.
- Watts, “Cell-averaging CFAR gain in spatially correlated k-distributed clutter,”IEE Proc.-Radar Sonar Navig., vol. 143, no. 5, pp. 321–327, 1996. DOI: https://doi.org/10.1049/ip-rsn:19960745.
- V. Weinberg, “Constant false alarm rate detectors for Pareto clutter models,” IET Radar Sonar Navig., vol. 7, no. 2, pp. 153–163, 2013. DOI: https://doi.org/10.1049/iet-rsn.2011.0374.
- A. Aalo, K. P. Peppas, and G. Efthymoglou, “Performance of CA-CFAR detectors in nonhomogeneous positive alpha stable clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2027–2038, 2015. DOI: https://doi.org/10.1109/taes.2015.140043
- Y. Rihan, Z. B. Nossair, and R. I. Mubarak, “An improved CFAR algorithm for multiple environmental conditions,”Signal Image Video Process. (SIViP), vol. 18, pp. 3383–3393, 2024. DOI: https://doi.org/10.1007/s11760-024-03001-x.
- Tsakalides, F. Trinic and C. L. Nikias, “Performance assessment of CFAR processors in Pearson-distributed clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 4, pp. 1377-1386, Oct. 2000. DOI: https://doi.org/10.1109/7.892685.
- Meziani and F. Soltani, “Performance Analysis of Some CFAR Detectors in Homogeneous and Non-Homogeneous Pearson-Distributed Clutter,” Signal Process., vol. 86, no. 8, pp. 2115-2122, Aug. 2006. DOI: https://doi.org/10.1016/j.sigpro.2006.02.036.
- Zhang, X. Wang, and S. Zhang, “Persymmetric Adaptive Target Detection With Dual-Polarization in Compound Gaussian Sea Clutter With Inverse Gamma Texture,” IEEE J. Ocean. Eng., vol. 47, no. 1, pp. 1-14, Jan. 2022. DOI: https://doi.org/10.1109/tgrs.2022.3207809.
- Li, Y. Wang, and X. Zhang, “Adaptive Persymmetric Subspace Detection in Non-Gaussian Sea Clutter With Structured Interference,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1-5, 2022. DOI: https://doi.org/10.1109/tgrs.2024.3374270.
- Salehi, M. Imani, A. Zaimbashi, and H. Yanikomeroglu, “Learning and model-based approaches for radar target detection,”IEEE Trans. Cogn. Commun. Netw., vol. 10, no. 5, pp. 1817–1830, Oct. 2024. DOI: https://doi.org/10.1109/tccn.2024.3391327.
- Zebiri and A. Mezache, “CFAR detection using two scale invariant functions in heterogeneous Weibull clutter,”Signal Image Video Process. (SIViP), vol. 18, pp. 7285–7291, 2024. DOI: https://doi.org/10.1007/s11760-024-03393-w.
- C. Luna Alvarado, F. D. A. García, L. P. J. Jiménez, G. Fraidenraich, and Y. Iano, “Performance evaluation of SOCA-CFAR detectors in Weibull-distributed clutter environments,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022. DOI: https://doi.org/10.1109/lgrs.2022.3152936.
- Abbadi, H. Bouhedjeur, A. Bellabas, T. Menni, and F. Soltani, “Generalized closed-form expressions for CFAR detection in heterogeneous environment,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 7, pp. 1011–1015, July 2018. DOI: https://doi.org/10.1109/lgrs.2018.2822782.
- Garvanov, “Probability characteristics of CFAR processors in presence of randomly arriving impulse interference,” in Proc. Int. Conf. Telecommun. Remote Sens., Cham, Switzerland, Sep. 2023, pp. 17–32. DOI: https://doi.org/10.1007/s11760-024-03480-y.
- Baadeche, M. A. Bouteldja, and F. Soltani, “Target detection performance analysis for MIMO radars in gamma environment,”Signal Image Video Process. (SIViP), vol. 18, pp. 8379–8385, 2024. DOI: https://doi.org/10.1007/s11760-024-03480-y.
- Zhou, J. Xie, G. Li, and Y. Du, “Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 53, pp. 1520–1535, 2017. DOI: https://doi.org/10.1109/taes.2017.2671798.
- Zhou, J. Xie, B. Zhang, and G. Li, “Maximum likelihood detector in Gamma-distributed sea clutter,”IEEE Geosci. Remote Sens. Lett., vol. 15, pp. 1705–1709, 2018. DOI: https://doi.org/10.1109/lgrs.2018.2859785.
- Sahed, E. Kenane, A. Khalfa, and F. Djahli, “Exact closed-form PFA expressions for CA- and GO-CFAR detectors in gamma-distributed radar clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 59, pp. 4674–4679, 2023. DOI: https://doi.org/10.1109/taes.2022.3232101.
- S. Gradshteyn, I. M. Ryzhik, D. Zwillinger, and V. Moll, Table of Integrals, Series, and Products, 8th ed. Amsterdam: Academic Press, Sep. 2014. DOI: https://doi.org/10.1016/C2010-0-64839-5
- Xue, J. Liu, S. Xu, and M. Pan, “Adaptive detection of radar targets in heavy-tailed sea clutter with lognormal texture,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–11, 2022. DOI: https://doi.org/10.1109/tgrs.2021.3137389.
|