- Liu, W. Mei, H. Du, Multi-modality medical image fusion based on image decomposition framework and nonsubsampled shearlet transform, Biomed. Signal Process. Control 40 (2018) 343–350, https://doi.org/10.1016/j.bspc.2017.10.001.
- Ding, D. Zhou, R. Nie, R. Hou, Y. Liu, Brain medical image fusion based on dualbranch CNNs in NSST domain, BioMed Res. Int. 2020 (2020) 1–15, https://doi. org/10.1155/2020/6265708.
- Zhu, M. Zheng, G. Qi, D. Wang, Y. Xiang, A phase congruency and local laplacian energy based multi-modality medical image fusion method in NSCT domain, IEEE Access 7 (2019) 20811–20824, https://doi.org/10.1109/access.2019.2898111.
- Wang, Y. Shen, Multi-modal image fusion based on saliency guided in NSCT domain, IET Image Process. (2020), https://doi.org/10.1049/iet-ipr.2019.1319.
- ] Y. Yang, A novel DWT based multi-focus image fusion method, Proc. Eng. 24 (2011) 177–181, https://doi.org/10.1016/j.proeng.2011.11.2622.
- Yu, B. Jia, L. Ding, Z. Cai, Q. Wu, R. Law, J. Huang, L. Song, S. Fu, Hybrid dualtree complex wavelet transform and support vector machine for digital multi-focus image fusion, Neurocomputing 182 (2016) 1–9, https://doi.org/10.1016/j. neucom.2015.10.084.
- Du, W. Li, B. Xiao, Q. Nawaz, Union laplacian pyramid with multiple features for medical image fusion, Neurocomputing 194 (2016) 326–339, https://doi.org/ 10.1016/j.neucom.2016.02.047.
- Fu, W. Li, J. Du, B. Xiao, Multimodal medical image fusion via laplacian pyramid and convolutional neural network reconstruction with local gradient energy strategy, Comput. Biol. Med. 126 (2020) 104048, https://doi.org/ 10.1016/j.compbiomed.2020.104048.
- Liu, X. Chen, R.K. Ward, Z.J. Wang, Image fusion with convolutional sparse representation, IEEE Signal Process. Lett. 23 (12) (2016) 1882–1886, https://doi. org/10.1109/lsp.2016.2618776.
- Li, X. Kang and J. Hu, "Image Fusion With Guided Filtering," in IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2864-2875, July 2013, doi: 10.1109/TIP.2013.2244222.
- Zhang, Q., Shen, X., Xu, L., Jia, J. (2014), Rolling Guidance Filter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham. https://doi.org/10.1007/978-3-319-10578-9_53.
- Tan, J. Zhang, P. Xiang, H. Zhou, W. Thitøn, Infrared and visible image fusion via NSST and PCNN in multiscale morphological gradient domain, in: P. Schelkens, T. Kozacki (Eds.), Optics, Photonics and Digital Technologies for Imaging Applications VI, SPIE, 2020, https://doi.org/10.1117/12.2551830.
- Yin, X. Liu, Y. Liu and X. Chen, Medical Image Fusion With Parameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain, in IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 1, pp. 49-64, Jan. 2019, doi: 10.1109/TIM.2018.2838778.
- Vaswani, A. (2017), Attention is all you need, In I. Guyon, U. von Luxburg, S. Bengio, et al. (Eds.), Proceedings of the 31st international conference on neural information processing systems, pp. 5998–6008, https://doi.org/10.48550/arXiv.1706.03762
- Xie, X., Zhang, X., Ye, S., Xiong, D., Ouyang, L., Yang, B., et al. (2023), MRSCFusion: joint residual swin transformer and multiscale CNN for unsupervised multimodal medical image fusion, IEEE Transactions on Instrumentation and Measurement, 72, pp.1–17, 1109/TIM.2023.3317470.
- Zhao, Z., Bai, H., Zhang, J., Zhang, Y., Xu, S., Lin, Z., et al. (2023), CDDFuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion, In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5906–5916, https://doi.org/10.48550/arXiv.2211.14461
- Xinzheng Xu, Dong Shan, Guanying Wang, Xiangying Jiang, Multimodal medical image fusion using PCNN optimized by the QPSO algorithm, Applied Soft Computing, Volume 46, 2016, Pages 588-595, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2016.03.028.
- Heba M. El-Hoseny, Wael Abd El-Rahman, El-Sayed M. El-Rabaie, Fathi E Abd El-Samie, Osama S. Faragallah,An efficient DT-CWT medical image fusion system based on modified central force optimization and histogram matching, Infrared Physics & Technology, Volume 94,2018,Pages 223-231,ISSN 1350-4495,https://doi.org/10.1016/j.infrared.2018.09.003.
- Ebenezer Daniel, J. Anitha, K.K Kamaleshwaran, Indu Rani, Optimum spectrum mask based medical image fusion using Gray Wolf Optimization, Biomedical Signal Processing and Control, Volume 34, 2017, Pages 36-43, ISSN 1746-8094, https://doi.org/10.1016/j.bspc.2017.01.003.
- S. Asha, S. Lal, V. P. Gurupur and P. U. P. Saxena, "Multi-Modal Medical Image Fusion With Adaptive Weighted Combination of NSST Bands Using Chaotic Grey Wolf Optimization," in IEEE Access, vol. 7, pp. 40782-40796, 2019, doi: 10.1109/ACCESS.2019.2908076.
- Daniel, "Optimum Wavelet-Based Homomorphic Medical Image Fusion Using Hybrid Genetic–Grey Wolf Optimization Algorithm," in IEEE Sensors Journal, vol. 18, no. 16, pp. 6804-6811, 15 Aug.15, 2018, doi: 10.1109/JSEN.2018.2822712.
- Parvathy, Velmurugan Subbiah, and Sivakumar Pothiraj. "Multi-modality medical image fusion using hybridization of binary crow search optimization." Health care management science 23 (2020): 661-669, https://doi.org/10.1007/s10729-019-09492-2
- Padmavathi, C.S. Asha, V. Karki Maya,A novel medical image fusion by combining TV-L1 decomposed textures based on adaptive weighting scheme, Engineering Science and Technology, an International Journal, Volume 23, Issue 1,2020,Pages 225-239,ISSN 2215-0986,https://doi.org/10.1016/j.jestch.2019.03.008.
- Tannaz, Akbarpour, et al. "Fusion of multimodal medical images using nonsubsampled shearlet transform and particle swarm optimization" Multidimensional Systems and Signal Processing 31 (2020): 269-287, https://doi.org/10.1007/s11045-019-00662-7
- Lina Xu, Yujuan Si, Saibiao Jiang, Ying Sun, Homayoun Ebrahimian,Medical image fusion using a modified shark smell optimization algorithm and hybrid wavelet-homomorphic filter,Biomedical Signal Processing and Control,Volume 59,2020,101885,ISSN 1746-8094,https://doi.org/10.1016/j.bspc.2020.101885.
- Liu, Y., Chen, X., Ward, R.K. and Wang, Z.J. (2016), Image Fusion with Convolutional Sparse Representation. IEEE Signal Processing Letters, 23, 1882-1886.
https://doi.org/10.1109/LSP.2016.2618776.
- Liu, Y., Chen, X., Ward, R.K. and Wang, Z.J., 2019, Medical image fusion via convolutional sparsity based morphological component analysis, IEEE Signal Processing Letters, 26(3), pp.485-489, 1109/LSP.2019.2895749
- Jiao Du, Meie Fang, Yufeng Yu, Gang Lu,An adaptive two-scale biomedical image fusion method with statistical comparisons,Computer Methods and Programs in Biomedicine,Volume 196,2020,105603,ISSN 0169-2607,https://doi.org/10.1016/j.cmpb.2020.105603.
- Sarmad Maqsood, Umer Javed,Multi-modal Medical Image Fusion based on Two-scale Image Decomposition and Sparse Representation, Biomedical Signal Processing and Control,Volume 57,2020,101810,ISSN 1746-8094,https://doi.org/10.1016/j.bspc.2019.101810.
- Pei, K. Fan and W. Wang, "Two-Scale Multimodal Medical Image Fusion Based on Guided Filtering and Sparse Representation," in IEEE Access, vol. 8, pp. 140216-140233, 2020, doi: 10.1109/ACCESS.2020.3013027.
- Amini, N., Fatemizadeh, E., & Behnam, H. (2014), MRI-PET image fusion based on NSCT transform using local energy and local variance fusion rules, Journal of Medical Engineering & Technology, 38(4), 211–219. https://doi.org/10.3109/03091902.2014.904014.
- Sumathi and R.Barani, “Qualitative Evaluation of Pixel-level Image Fusion Algorithms”, Proceedings of the International Conference on Pattern Recognition, Informatics and Medical Engineering , IEEE PRIME 2012, 10.1109/ICPRIME.2012.6208364
- Yin, X. Liu, Y. Liu and X. Chen, "Medical Image Fusion With Parameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain," in IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 1, pp. 49-64, Jan. 2019, doi: 10.1109/TIM.2018.2838778.
- Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, 2014, https://doi.org/10.1016/j.advengsoft.2013.12.007.
- Yin M, Liu X, Liu Y, Chen X (2018), Medical image fusion with parameter adaptive pulse coupled neural network in nonsubsampled shearlet transform domain, IEEE Trans Instrum Meas 99:1–16, 1109/TIM.2018.2838778
- Liu S,Wang J, Lu Y, Li H, Zhao J, Zhu Z (2019), Multi-focus image fusion based on adaptive dual-channel spiking cortical model in non-subsampled shearlet domain, IEEE access 7:56367–56388, 1109/ACCESS.2019.2900376
- Wang Z, Wang S, Guo L (2018), Novel multi-focus image fusion based on PCNN and random walks, Neural Comput Appl 29:1101–1114, https://doi.org/10.1007/s00521-016-2633-9
- He K, Zhou D, Zhang X, Nie R (2018), Multi-focus: focused region finding and multi-scale transform for image fusion, Neuro computing 320:157–170, https://doi.org/10.1016/j.neucom.2018.09.018
- A. Johnson and J. Alex Becker, The whole brain atlas,” [Online]. Available: https://www.med.harvard.edu/aanlib/
- Venkata Srikanth, A.Suneel Kumar, B.Nagasirisha, and T.V. Lakshmi, “Brain MRI and CT Image Fusion Using Multiscale Local Extrema and Image Statistics”, ECTI-EEC, vol. 22, no. 1, Feb. 2024, https://doi.org/10.37936/ecti-eec.2024221.249146.
|