- S. Yusof, M. F. P. Mohamed, N. A. Ghazali, M. F. A. J. Khan, S. Shaari, and M. N. Mohtar, “Evolution of solution-based organic thin-film transistor for healthcare monitoring– from device to circuit integration: A review.”. Alexandria Engineering Journal, 61(12):11405–11431, 2022. DOI: https://doi.org/10.1016/j.aej.2022.05.013.
- J. Kwon et al., “Molecular engineering of printed semiconducting blends to develop organic integrated circuits: crystallization, charge transport, and device application analyses.”. ACS Applied Materials & Interfaces, 14(20):23678–23691, 2022. DOI: https://doi.org/10.1021/acsami.2c02032.
- Lago, M. Buonomo, F. Prescimone, S. Toffanin, M. Muccini, and A. Cester, “Direct comparison of the effect of processing conditions in electrolyte-gated and bottom-gated TIPS-pentacene transistors.”. Electronic Materials, 3(4):281–290, 2022. DOI: 10.3390/electronicmat3040024.
- Shi, J. Liu, Y. Hu, W. Hu, and L. Jiang, “Effect of contact resistance in organic field‐effect transistors.”. Nano Select, 2(9):1661–1681, 2021. DOI: https://doi.org/10.1002/nano.202000059.
- Mohammadian and L. A. Majewski, “High capacitance dielectrics for low voltage operated OTFTs.”. IntechOpen, 2020. DOI: 10.5772/intechopen.91772.
- Kim, J. Seo, J. Choi, and H. Yoo, “Vertically integrated electronics: new opportunities from emerging materials and devices.”. Nano-Micro Letters, 14:201, 2022. DOI: https://doi.org/10.1007/s40820-022-00942-1.
- Choi and H. Yoo, “Combination of polymer gate dielectric and two-dimensional semiconductor for emerging field-effect transistors.”. Polymers, 15(6):1395, 2023. DOI: https://doi.org/10.3390/polym15061395.
- Tang, L. Feng, J. Zhao, Q. Cui, S. Chen, and X. Guo, “Inkjet printed fine silver electrodes for all-solution-processed low-voltage organic thin film transistors.”. Journal of Materials Chemistry C, 2(11):1995–2000, 2014. DOI: https://doi.org/10.1039/C3TC32134G.
- Tao, H. Ning, J. Chen, J. Zou, Z. Fang, and C. Yang, “Inkjet printed electrodes in thin film transistors.”. IEEE Journal of Electron Device Society, 6:774–790, 2018. DOI: 10.1109/JEDS.2018.2852288.
- S. Massey, X. Song, and R. Prakash, “Direct printed flexible organic thin-film transistors with cross-linked PVA-carrageenan gate dielectric.”. IEEE Sensors Letters, 7(5): 4500804, 2023. DOI: 10.1109/LSENS.2023.3271061.
- Martinelli, A. Nitti, R. Po, and D. Pasini, “3D Printing of layered structures of metal-ionic polymers: recent progress, challenges and opportunities.”. Materials, 16(15):5327, 2023. DOI: https://doi.org/10.3390/ma16155327.
- S. Yusof, M. F. P. Mohamed, N. A. Ghazali, M. F. A. J. Khan, M. Z. Pakhuruddin, and S. Shaari, “All solution processable OTFT-based on direct-written printing method towards flexible electronics applications.”. Journal of Advanced Research in Applied Sciences and Engineering Technology, 41(2):93–101, 2024. DOI: https://doi.org/10.37934/araset.41.2.93101.
- S. Yusof, M. F. P. Mohamed, N. A. Ghazali, M. K. Ishak, and S. Shaari, “Direct-written silver electrodes for all-solution-processed low-voltage organic thin film transistors towards flexible electronics applications.”. Journal of Advanced Research in Micro and Nano Engineering, 21(1):75–88, 2024. DOI: https://doi.org/10.37934/armne.21.1.7588.
- Hou, H. Lu, Y. Li, L. Yang, and Y. Gao, “Direct ink writing of materials for electronics-related applications: a mini review.”. Frontiers in Materials, 8:647229, 2021. DOI: 10.3389/fmats.2021.647229.
- P. Hong, A. Y. Park, S. Lee, J. Kang, N. Shin, and D. Y. Yoon, “Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors.”. Applied Physics Letters, 92(14):143311, 2008. DOI: https://doi.org/10.1063/1.2907691.
- Y. Cho, J. M. Ko, J. Lim, J. Y. Lee, and C. Lee, “Inkjet-printed organic thin film transistors based on TIPS pentacene with insulating polymers.”. Journal of Materials Chemistry C, 1(5):914–923, 2013. DOI: https://doi.org/10.1039/C2TC00360K.
- Wageh, W. Boukhili, A. S. Alshammari, and A. Al-Ghamdi, “Experiment study and analytical modeling of fully solution processed organic thin film transistors with conductive polymer top-gate electrode: Performance optimization.”. Materials Science in Semiconductor Processing, 157:107325, 2023. DOI: https://doi.org/10.1016/j.mssp.2023.107325.
- Zhang, Z. He, S. Bi, and K. Asare-Yeboah, “Phase segregation controlled semiconductor crystallization for organic thin film transistors.”. Journal of Science: Advanced Materials and Devices, 5(2):151–163, 2020. DOI: https://doi.org/10.1016/j.jsamd.2020.05.004.
- Jakher and R. Yadav, “Organic thin film transistor review based on their structures, materials, performance parameters, operating principle, and applications.”. Microelectronic Engineering, 290:112193, 2024. DOI: https://doi.org/10.1016/j.mee.2024.112193.
- Geiger et al., “Effect of the degree of the gate-dielectric surface roughness on the performance of bottom-gate organic thin-film transistors.”. Advanced Materials Interfaces, 7(10):1902145, 2020. DOI: https://doi.org/10.1002/admi.201902145.
- Demir, S. Baʇci, S. E. San, and Z. Doʇruyol, “Pentacene-based organic thin film transistor with SiO2 gate dielectric.”. Surface Reviews and Letters, 22(3):1550038, 2015. DOI: https://doi.org/10.1142/S0218625X15500389.
- C. Hung and Y. J. Lin, “Effects of (NH4)2Sx treatment on the surface properties of SiO2 as a gate dielectric for pentacene thin-film transistor applications.”. Materials Research Express, 5:015101, 2018. DOI: 10.1088/2053-1591/aaa09d.
- Verma, V. N. Mishra, and R. Prakash, “A self-aligned, solution-processed low-voltage operated organic thin-film transistor for ammonia gas sensing at room temperature.”. IEEE Sensors Journal, 23(6):5561–5568, 2023. DOI: 10.1109/JSEN.2023.3236438.
- Feng, W. Tang, X. Xu, Q. Cui, and X. Guo, “Ultralow-voltage solution-processed organic transistors with small gate dielectric capacitance.”. IEEE Electron Device Letters, 34(1):129–131, 2013. DOI: 10.1109/LED.2012.2227236.
|