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ABSTRACT 
A two dimensional finite model with inclined crack at different crack angles are being analyzed in 
mixed mode condition using photo elasticity method for the determination of Stress Intensity 
Factors. The well-known Sih’s equation and three points deterministic approach is used for the 
determination of stress intensity factors. The effects of biaxial load factor, crack angle, size factors 
were studied and a regression model was developed for geometry correction to predict Stress 
Intensity Factors. The results give a good compromise to the theoretical one. The experimental 
result also gives significant data for the two dimensional mixed mode loading conditions. 
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1    INTRODUCTION 

URING recent years the fracture mechanics has obtained a special importance for predicting the material behavior 
under static and dynamic loading situation. Several catastrophic failures, over the years, have resulted in a sharp 

awareness of the effect of the cracks and stress raiser in the manufactured parts on their failure strength. The strength of a 
structure could be severely affected by the presence of crack like defects or pre-existing cracks and the defects are 
unavoidable in a cost effective manufacturing process. Since there are limitations on minimum size of the defects that can 
be detected, one needs to know the relation between the defect size and the strength of a structure. Fracture mechanics 
provides a methodology through which a quantitative relationship between the applied stress on a structure, defect size 
present, inherent properties of material and the fracture resistance characteristics of structure may be obtained. The stress 
intensity factor is generally used to characterize the crack tip stress field in the linear elastic situation. The stresses in the 
vicinity of a crack tip can be characterized by a single parameter called the Stress Intensity Factor (SIF). The SIF 
can be determined analytically only for relatively simple components and loadings. Most of the investigation 
established their approach by analytically generating isochromatic loops for plate type specimens containing a single 
edge crack. In all photo elastic methods more than one isochromatic fringe loop is required to extract the SIF, except 
for Irwin’s two parameter approach, which suffers from the error normally associated with the measurements of 
angles and the difficulty in defining both the origin of the crack tip and the apogee of fringe. The effective methods 
of experimentally determining the stress intensity factor for a body containing a crack is to analyze the isochromatic 
pattern obtained from a photo elastic model.  

Measurements of the fringe order N and position parameters r & θ, which locate one point or a number of points 
on a fringe loop are sufficient to permit the determination of KI, KII and σox.. There are several methods which are 
limited to determine only two (i.e. KI, and σox or KI and KII) of the three quantities which affect the fringe pattern. 
Also most of the methods developed to employ isochromatic data from only one or two points in the fringe field 
which do not fully utilize the available data. Most of the studies for evaluating mixed mode stress intensity factor are 
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for uniaxial loading.  Experimental study of the effect of biaxial load factor, specimen geometry on stress field 
parameters KI, KII and σox is very limited. Whereas it is a well-known fact that these factors have a significant effect 
on the crack growth under mixed mode loading.  

2    THEORY 

The cracks in most of the structures of engineering importance may be located or developed during the service in the 
zones of stress concentration and the crack may be large enough so that the crack-tip may be closer to a boundary. 
The basic stress field equations of fracture mechanics are developed for cracks lying in a body of infinite dimensions 
(i.e. the crack-tips are far away from the boundaries) subjected to a uniform stress field. When only the first term 
(singular solution) of these equations are attempted to be applied for solving real life problems, one gets erroneous 
results. The recognition of this fact has led the researchers to account for this effect and multi parameter stress field 
equations have been developed in the last two decades. The role of photoelasticity in the development of multi 
parameter stress field equations are brought out in this context.  

The stress optic law relates the fringe order N and principal stresses σ1 and σ2 as [1] 
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For the purpose of mixed mode study, the stresses in the local neighborhood of a crack tip (r/a<1) can be 

approximated by Westergaard Stress component σij in an increasing order power series as follows [2] 
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The N-K relation given in Eq. (6) is non-linear in terms of the three unknowns KI, KII and σox. In the present 

analysis, three points deterministic approach have been used. In this approach, data is selected from three arbitrary 
points (r1, θ1), (r2, θ2) and (r3, θ3). The Newton-Raphson [3] method is applied to solve the three simultaneous non-
linear equations. The convergence of this method is rapid and three or four iterations are sufficient for obtaining 
precise results for KI, KII and σox. Fig. 1 shows that in Sih equation, five terms are sufficient for the stress calculation 
ahead of the crack tip. More than five numbers of terms have the same effect; hence five numbers of terms are used 
for calculation of stress field parameters. 
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Fig. 1 
Effect of number of terms on stress field. 
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3    MATERIAL AND METHOD 

The stress distribution in the stressed model can be analyzed by using the photo-elasticity method. It occupies 
prominent place because the method is cheaper, faster and more accurate than any other experimental procedure. 
The method is proposed for determining the modulus of elasticity, material fringe value etc. To study or to evaluate 
the mixed mode SIF, photoelastic method specimen were prepared from the cast material Araldite CY-230 (100 part 
by weight) and Hardener HY-951(9 part by weight).The square piece of 100×100×2 mm3 size were cut from cast 
plate. Mechanical slits were made at the centre of the plate at required angle of inclination with respect to vertical 
loading axis by drilling a hole of diameter (2 mm) and then cutting by jewelry saw to simulate the natural crack. The 
ends of mechanical sheet were further extended by razor blades by an amount 0.2 to 0.5 mm. The final lengths were 
kept 12, 16 and 20 mm and crack inclination angle were taken 00, 300, 450 and 600. The crack tip radius/ crack length 
were taken less than 0.02 mm. The above results approached very near the investigation of Etheridge and Dally [4]. 
Photo elastic properties are obtained by Tardy’s compensation method [1].  

As the reaction of resin and hardener is exothermic, a large amount of heat is librated, because of which when 
the percentage of hardener in the resin is increased; the curing time is also increased. Prolong curing time or 
increasing the curing temperature gives slightly better thermal stability and thus constant mechanical and electrical 
properties over a large range of temperature [5]. For finding out the proportionality limits and modulus of elasticity 
beam strips of different width and thickness, equal to the thickness of casted sheet were cut from the sheet with the 
help of slitting cutter on the milling machine. The specimen (Fig. 2) was loaded on Instron Universal Testing 
Machine, model 6051 of 5 kN capacity with a crosshead speed 0.1 mm/min. The programme for tensile test was 
loaded in the console control to obtain the proportionality limits and modulus of elasticity. 

For finding out the material fringe value a circular disc (Fig. 3) diameter 60 mm was made from the casted sheet 
by turning on the model making lathe. The circular disc was loaded diametrically at different loads for the 
observations at the centre of the disc. For this instance, the equation of material fringe value becomes [1] 

 

fσ = 
8p

DNπ
                    (7) 

 
 

 
 
 
 
 
 
Fig. 2 
Specimen geometry for tensile test. 
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Fig. 3 
Specimen geometry and loading condition for diametral 
compression. 
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or 
 

fσ = 
8
Dπ

 (slope of the curve drawn between p vs. N)               (8) 

 
It was noted that the value of fσ is independent of model thickness ‘h’. For the stress analysis by photoelastic 

method, object is simulated by photo elastic model. Photo elastic material which has low fringe value, high value of 
figure of merit, high value of  sensitivity index , high value of  modulus of elasticity and high value of proportional 
limits is preferred for making of photoelastic model, which is justified as discussed below. Eq. (1) can be written as 

 

max2
Nf

t
σ τ=                     (9) 

 
Above equation shows that for constant shear stress ( maxτ ), N will be large if f σ  is small. For higher optical 

sensitivity, index material should have a lower material fringe values (fσ). For this reason, low fringe value is 
preferred. The deformation of photoelastic material should be as small as possible for stress analysis (deformation 
should be within the elastic limit). For this reason, large Modulus of elasticity and large proportional limits are 
preferred [10]. Fig. 4 shows that material fringe value is minimum, when 8% (by weight) hardener (HY-951) is 
mixed with resin (CY-230) and all other material properties tend to increase. Fig. 4 shows that as a compromise 
between material fringe value and modulus of elasticity 8% to 9% of hardener is best for conducting the experiments 
on the resin (CY-230) with hardener (HY- 951) as per the requirement of photoelastician. For the present 
investigation, 9% was used. 

3.1 Data collection and measurement using CAD software 

Currently, direct eye observation method is being adopted for determining fringe order at the point of interest for 
stress analysis to minimize the error due to direct observation of fringe order at the point of interest. For this 
purpose, photographs from the screen under different loading were taken. Photographs taken from the experimental 
setup were scanned. The scanned photographs were loaded in CAD software for the measurement of fringe order at 
the different points from the crack-tip. Fig. 5 shows three points on the fringe pattern A, B & C, respectively. OP 
distance shows the half crack length ‘a’. To verify the accuracy of the present method the same point locations A, B & 
C are selected and were marked by a marker on the experimental model and ten photographs were taken for the 
same loading condition. These photographs were taken by different person and at different time span. All ten 
photographs were used for the measurement of position of interest point i.e. r and θ values. All measured values of r 
and θ for same loading are shown in Table 1.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4 
Material properties of CY-230 with different percentage of 
Hardener (HY-951). 
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Fig. 5 
Image processing and measurement of fringe position from 
crack tip using CAD software. 
 

 
Table 1 
Measured r and θ using CAD-software and the statistical properties  
S. No r1 (mm) 

1θ  (degree) r2 (mm) 
2θ  (degree) r3 (mm) 

3θ  (degree) 

1. 4.817 95 6.746 78 5.488 52 
2. 4.702 95 6.750 78 5.473 52 
3. 4.817 95 6.740 78 5.460 52 
4. 4.817 95 6.732 78 5.455 52 
5. 4.820 95 6.749 78 5.485 52 
6. 4.820 95 6.752 78 5.485 52 
7. 4.808 95 6.733 78 5.483 52 
8. 4.812 95 6.745 78 5.491 52 
9. 4.821 95 6.731 78 5.485 52 
10. 4.817 95 6.731 78 5.485 52 
Mean 4.805 95 6.740 78 5.477 52 
Std. Deviation 0.0345 0 0.025 0 0.0349 0 
Co-efficient of variance 0.0071 0 00037 0 0.0063 0 

4    RESULT AND DISCUSSION 
4.1 Stress intensity factor KI 

The effect of biaxial load factor k on stress intensity factor (KI) is shown in Fig. 6(a) for a/W=0.06 and different 
crack angles. Fig. 6(a) shows that KI increases as k increases. This may be due to increase in plastic zone size 
produced ahead of the crack-tip. It is well known that in a stressed body or plate, the stress exceeds the yield 
strength near the crack tip and a plastic zone develops. The actual shape and size of the plastic zone depends on the 
plastic flow of the material and it is proportional to (KI/σo)2. Due to this, as k increases the position and size of the 
plastic zone ahead of crack line increases. The position and extent of minimum value of plastic zone size is also 
highly influenced by biaxial load factor. Similar results are also found in the work of Du and Hancou [6] and Poul 
[7]. As the plastic zone size is proportional to square of stress intensity factor KI, it can be said that for a given crack 
position, KI should increase when k is increased. Hence, the experimental results which have been depicted here 
show increasing behavior with k. The effect of crack angle on the (KI) is shown in Fig. 6(b) for different k values. 
Fig. 6(b) shows that KI decreases when α < 45° and there after it increases for all k values. At the crack angle α = 
45° maximum change in KI occurs. This may be due to the change of crack position from minimum loading 
direction (σ-axis) to maximum loading direction (kσ-axis). The experimental result shows that over all values of KI 
decreases with increasing crack angle. The theoretical relation available for KI is written as 

 

( ) ( )1 1 cos 2
2I

a
K k k

σ π θ⎡ ⎤= + + −⎢ ⎥⎣ ⎦                (10) 
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Fig. 6(a) 
Effect of biaxial factor on stress intensity factor KI 
for a/W = 0.06. 

  

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6(b) 
Effect of crack angle on stress intensity factor KI for 
a/W = 0.06. 
 

  
 
 
 
 
 
 
 
 
 
 
Fig. 6(c) 
Effect of (a/W) ratio on stress intensity factor KI for  
α = 30°. 
 

 
This relation is based on assumption of infinite plate with remote loading conditions for all α values. For α = 

π/2, Eq. (10) will reduce to  
 

σ πIK a=                   (11) 
 
and α = π/4, Eq. (10) becomes 
 

(1 )
2I

a
K k

σ π
= +                  (12) 

 
Eqs. (8) and (9) show that KI is independent of crack angle α. The bracketed term in Eq. (10) will be positive for k>1 but 

more significant when α ≤  45°. In case of k =1 the maximum load is equal to minimum load. In this case KI is 
independent of crack angle α. Theoretical result also shows that for k = 1, KI is constant for all value of α. The 
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experimental value also shows this type of trend in Fig. 6(b) for k =1 and the value of KI is approximately constant. 
Lee, Liebowitz and Eftis [8] have proposed analytically and numerically that stress intensity factor, depends on the 
(L/a) and (W/a), where L is the length of specimen and W is the width of the specimen. For horizontal crack, Hafelle 
and Lee [9] have also studied the effect of specimen geometry factor (2a/W) and (2L/W) under pure Mode I loading. 
The dependence of KI on (a/W) is shown in Fig. 6(c) for different crack angle and biaxial load factor. Fig. 6(c) 
shows that KI increases when a/W increases form 0.06 to 0.1. The theoretical relation also gives similar trend. In the 
present investigation, it is seen that KI depends upon crack angle, biaxial load factor, constant stress term and 
geometry factor (a/W) and (a/L). Hence, an attempt has been made to correlate these parameter to KI and following 
from is presented 

 

( ) ( ) 11 1 cos 2 e
I

e

L
K a k k f

W
σ π θ

⎛ ⎞⎟⎜⎡ ⎤ ⎟= + + − ⎜ ⎟⎢ ⎥ ⎜⎣ ⎦ ⎟⎜⎝ ⎠
              (13) 

 
where eL =L/2- a.cosα  and eW =W/2- a.sinα , (given in Fig. 7). The function f1 (Le/We) is obtained from regression 
analysis and found as 
 

2 3 4

1 1 2 3 4 5
e e e e e

e e e e e

L L L L L
f a a a a a

W W W W W

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟= + + + +⎜ ⎜ ⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

                 (14) 

 
The coefficient (a1 to a5) are shown in Table 2 for various biaxial factor. 

4.2 Stress intensity factor KII 

The variation of KII with biaxial factor k is shown in Fig. 8(a) indicates that KII decreases as k increases for a given 
crack angle. The variation of KII with k is found to be similar to the theoretical variations. Fig. 8(b) shows the effect 
of crack angle α on KII. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 
Effective length and effective width in the specimen. 
 

 
 
Table 2 
The coefficient of Eq. (14) 

k 
Coefficients 
a1 a2 a3 a4 a5 

1.0   2958.13  -12319.36   19224.87   -13324.242   3460.51 
1.2   4537.08    18372.43   27972.43     -18972.07   4837.87 
1.4 15558.09   -64654.20 100712.02   -69686.75 18072.87 
1.6 25511.84 -105574.57 163730.04 -112775.23 29110.39 
1.8 13629.04   -56212.08   87054.91   -59991.82 15522.33 
2.0 42527.06 -175971.91 272858.97 -187899.41 48486.72 
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Fig. 8(a) 
Effect of biaxial factor on stress intensity factor KII 
for a/W = 0.08. 
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Fig. 8(b) 
Effect of crack angle on stress intensity factor KII for 
a/W = 0.06. 
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Effect of a/W on stress intensity factor KII   for α = 
45°. 
 

 
Slight decrease in KII with α is seen in Fig. 8(b) in some cases of biaxial load factor. This type of behavior is 

seen mostly for higher biaxial factor (k > 1.6). The magnitude of KII is found to be constant or slightly increase and 
then decrease when k < 1.6. The theoretical values decrease up to α < 45° then increases with increase in α for all 
value of k. Fig. 8(c) shows the effect of (a/W) on KII for different crack angles and biaxial factor. It is seen that KII 
becomes constant for α = 45° beyond a/W = 0.08 values. In Fig. 8, KII is higher for higher value of k. Fig. 8(c) 
shows that the value of KII is of the order of 10-8 to 10-7 for all cases of (a/W) for k = 1. The theoretical value of KII 
for k = 1 is zero. It reveals for the Fig. 8(a-c) that KII depends on α, k and a/w. The magnitude obtained from 
experiments is also quite different from the theoretical solutions for same boundary conditions and loading. This is 
due to the geometry constraint. Hence, a geometry factor is derived for KII and presented in following form 
 

22
e

II
e

La
K f

W

σ π ⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠                  (15) 
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Table 3 
Coefficient of Eq. (16)  

k 
Coefficients 
a21 a22 a23 a24 a25 

1.0             0.023338               -0.006552               0.0149691                -0.103077            0.026600 
1.2   166886.0     -484369.54     751914.84      -518243.74  133810.83 
1.4     52169.22     -215980.16     334828.70      -230670.93    59558.42 
1.6       5040.72       -22239.70       36592.78        -26637.27       7234.41 
1.8       8273.014       -34264.72       53203.89        -36704.137       9492.012 
2.0 2974206.0 -12400926.0 19376463.0 -13446820.0 3497075.3 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 9(a) 
Effect of crack angle on Sig.ox, for a/W = 0.06. 
 

 
 
where the function f2 (Le/We) is obtained from regression analysis and found as 

 
2 3 4

2 21 22 23 24 25
e e e e e

e e e e e

L L L L L
f a a a a a

W W W W W

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟= + + + +⎜ ⎜ ⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

             (16) 

 
The coefficient (a21 to a25) are shown in Table 3 for various biaxial factor. 

4.3 Constant stress term, σox 

The effect of biaxial load factor, crack angle and specimen geometry parameter a/W and a/L are shown in Fig. 9(a-
b). Fig. 9(a) shows that σox increases as α increases upto α < 45° for all a/W ratios. There after, it shows decreasing 
tendency. When α < 45°, the crack is towards the minimum loading axis. In this case the net area in the length direction of 
the specimen becomes more significant than net area in the width direction of the specimen as in our analysis, biaxial load 
factor k ≥ 1. The net effective dimension in length direction and width direction are defined in Fig. 7. 
 
Le (effective length)=L/2 – a cos α. 
We (effective width)=W/2 – a sin α.  

 
Now as α increases from α = 0 to α < 45°, Le increases and We decreases. In this case, (α<45°) Le is more 

significant than We and as Le/We increases Sig.ox (σox) shows increasing tendency whereas when α exceeds 45°, We 
becomes more significant than Le. For α > 45°, Lee/We shows decreasing tendency as α is increased from α = 45° to 
higher value and hence σox shows decreasing tendency. Hence, it can be said that sig,ox (σox) depends upon the 
width factor (W/a) and length factor (L/a) or combining we can say geometry factor (Le/We). Lee, Liebowitz and 
Eftis [7] have also proved for horizontal crack that the constant stress term as denoted by ‘A’ should be the fraction 
of (L/a) and (W/a) and suggested a geometry correcting factor containing non-dimensional parameter (W/a) and 
(L/a) for sig.ox (σox). The effect of biaxial load factor on sig.ox is shown in Fig. 9(b). An increasing tendency with k 
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is seen in Fig. 7 (b) for all crack angles and biaxial load factor. Fig. 9(b) also shows that when k exceeds 1.6 the 
difference in σox values for a given crack angle is more as compared to k < 1.6. This type of behavior is seen for all 
a/W ratios taken in the present investigation. Similar differences are also seen for KI. The effect of a/W on σox is 
shown in Fig. 9(c) for α = 30 and different biaxial factor k. From the present analysis, it can be said that σox depends 
on geometry parameters (a/L) and (a/W) and biaxial factor k. Hence an attempt has been made to correlate these 
parameter with the experimentally obtained σox value. From the present experimental results, it is proposed that σox 
may be written in form of 

 

3
e

ox
e

L
f k

W
σ σ

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟=− −⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
                       (17) 

Where σ= is the applied stress; k= biaxial factor and 3
e

e

L
f

W

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
= geometry factor. 

 
  

 

Fig. 9(b) 
Effect of biaxial factor on Sig.ox, for a/W = 0.06. 
 

 
  

 

Fig. 9(c) 
Effect of (a/W) on Sig.ox, for α = 30°. 
 

 
 
Table 4 
Coefficient of Eq. (18) 

k 
Coefficients 
a31 a32 a33 a34 a35 

1.0   -702.15    2995.24 -4774.03    3374.71   -892.68 
1.2   6484.74 -26616.45 40951.69 -27988.54   7169.68 
1.4 14510.60 -59920.26 92735.20 -63745.92 16421.54 
1.6 10367.84 -42619.08 65658.29 -44924.94 11519.13 
1.8   8356.27 -34106.06 52145.22 -35390.82   8996.79 
2.0   8573.45 -34850.31 53065.16 -35866.77   9079.93 



244                   V.K. Singh and P.C. Gope 
 

 

© 2009 IAU, Arak Branch  

Table 5 
τmax/τ′max, value 

S. No. k 
τmax/τ′max, 
α = 0° α = 30° α = 45° α = 60° 

1. 1.0 0.8849 0.69225 0.59215 0.63388 
2. 1.2 0.98657 0.87685 0.8386 0.95862 
 

 
The function f3 is obtained from the regression analysis technique and expressed as 

 
2 3 4

3 31 32 33 34 35
e e e e e

e e e e e

L L L L L
f a a a a a

W W W W W

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟= + + + +⎜ ⎜ ⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
            (18) 

 
The coefficients (a31 to a35) are shown in Table 4 for various biaxial factor.  

4.4 Comparative studies 

To compare the experimental results with theoretical values, Table 5 presents the ratio of τmax/τ′max, where τmax is 
obtained from two-term theoretical solution. Table 5 shows that values are very near to unity, but not exactly one. 
This difference may be due to non-inclusion of higher order stress terms in the theoretical prediction for σ =32.48 
kg/mm2, a= 10 mm and k= 1. The comparative results show a good agreement between experimental and theoretical 
results.  
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