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Abstract

Let R be an associative ring with identity, C(R) be the category of com-
plexes of R-modules and Flat(C(R)) be the class of all flat complexes of R-
modules. We show that the flat cotorsion theory (Flat(C(R)),Flat(C(R))⊥)
have enough injectives in C(R). As an application, we prove that for each flat
complex F and each complex Y of R-modules, Exti(F,Y) = 0, whenever R
is n-perfect and i > n.
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1 Introduction

In 1966 Spencer E. Dickson [2] introduced torsion theories for
abelian categories by exploiting the Hom-functor. By replacing for-
mally the Hom-functor with the Ext-functor one get the basic tools
of a cotorsion theory in an abelian category, which naturally ex-
tends the classical cotorsion theory. The classical cotorsion theory,
where it is developed in the 60s by Harrison and many other alge-
braists, is the pair (Torsion-free, Cotorsion). Based on this idea, in
1978 Luigi Salce [6], introduced the notion of cotorsion theories in
the category of abelian groups.

The main task of Salce is a detailed description of the cotorsion
theory (⊥(S⊥), S⊥) cogenerated by S, where S ⊆ Q is a rank-1
group such that 1 ∈ S, see [6]. These cotorsion theories (for any
S ⊆ Q) are called rational cotorsion theories. Salce in [6, Problem
2, p. 31] raised the question of whether rational cotorsion theories
have enough projectives (injectives).

In 1998, Gobel and Shelah answered this question, see [5, Theorem
6.1]. They proved that any cotorsion theory of abelian groups, which
is cogenerated by a set H of rank-1 groups, has enough injectives
and projectives. Therefore rational cotorsion theories have enough
injectives and projectives.

In 1981 , Enochs raised the question of whether every module has
flat cover. Also he proved that if a module has a flat precover, then
it has a flat cover. Let F stands for the class of all flat R-modules.
It is easy to see that the problem of the existence of F -precovers is
equivalence to the problem of completeness of the cotorsion theory
(F ,F⊥).

The existence of covers and envelopes are essential tools of rela-
tive homological algebra. Let X be a class of R-modules, which is
closed under isomorphism, the completeness of the cotorsion the-
ories (⊥X , (⊥X )⊥) and (⊥(X⊥),X⊥), induces a relative homology
with respect to X . Hence complete cotorsion theories, provide us
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to have homological algebra in Grothendieck categories.

In 2000, Eklof and Trlifaj proved that any cotorsion theory of R-
modules which is cogenerated by a set, is a complete cotorsion the-
ory, see [4]. Therefore by [7] the flat cotorsion theory (F ,F⊥) is
cogenerates by a set and hence it is complete. Thus the category of
R-modules admits F -covers and F⊥-envelopes.

2 Complete cotorsion theories in the category of com-
plexes of R-modules

Throughout this section, let G be a Grothendieck category with
projective generator andA = C(R) be the category of all complexes
of R-modules. Let X be a class of objects of G such that it is closed
under isomorphisms, finite direct sums and direct summands. In
this section, we will give a general definition of relative homological
algebra.

Definition 2.1 The right(left) orthogonal of X in G is defined as

X⊥ = {Y| Ext1A(X,Y) = 0,∀X ∈ X}(⊥X = {Y| Ext1A(Y,X) = 0,

∀X ∈ X}).

The pair (X ,Y) is said to be a cotorsion theory in G if X⊥ = Y
and X = ⊥Y . If there exists a class S of objects in X such that
S⊥ = Y , we say that (X ,Y) is cogenerated by S.

Definition 2.2 A cotorsion theory (X ,Y) in G is said to have
enough injectives(projectives), if for any object M of A, there exists
a short exact sequence

0 //M //X //Y // 0 ( 0 //Y //X //M // 0 )

for some X ∈ X and Y ∈ Y. It also called complete if it has enough
injectives and projectives.
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Example 2.1 The ordinary homological algebra, induced by the
complete cotorsion theories (Proj R,R-Mod) and (R-Mod,Inj R),
where Proj R (Inj R) is the class of all projective (injective) R-
modules. Those cotorsion theories have enough injectives and pro-
jectives.

Example 2.2 The cotorsion theory (R-Mod, Inj R) is cogenerated
by the set of modules R/I where I is a left ideal. Therefore it has
enough injectives.

Example 2.3 In the classical cotorsion theory (Torsion-free, Co-
torsion), every torsion-free abelian group J can be embedded in an
exact sequence already guarantees that G is cotorsion and hence,
the definition of cotorsion groups may also be given as groups G
satisfying Ext(Q, G) = 0. Therefore the classical cotorsion theory
is cogenerated by the rationals Q, i.e. (Torsion-free, Cotorsion ) =
(⊥(Q⊥),Q⊥). Therefore it has enough injectives.

Proposition 2.1 If a cotorsion theory (X ,Y) having enough in-
jectives in G, then it also have enough projectives.

Proof. Let (X ,Y) has enough injectives and M be an object of G.
The category G is a Grothendieck category with projective genera-
tors. Then there exists an exact sequence 0 //T //P //M // 0
with P projective. By assumption, there exists an exact sequence
0 //T //Y //X // 0 with X ∈ X and Y ∈ Y . Using the pushout
diagram

0
��

0
��

0 //T //

��

P //

��

M // 0

0 //Y //

��

Z //

��

M // 0

X

��

X

��

0 0

with exact rows and columns. Since X is closed under extensions,
then Z ∈ X . Hence the middle row is the desired exact sequence.
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Proposition 2.2 Let S be a nonempty subset of objects of A. Then
the cotorsion theory (⊥(S⊥),S⊥) has enough injectives.

Proof. Let B be the direct sum of the objects in S, X be
an object of A and κ be an infinite cardinal number such that
κ > |B|+ |X|+ |R|. Let β = 2κ. By [4, Theorem 2] there exists an
exact sequence 0 //X //Y //K // 0 of objects in A such that
Ext1(B,Y) = 0. To prove that K ∈ ⊥(S⊥), it suffices to show that
Ext1(K,T) = 0 whenever Ext1(B,T) = 0. However, K = ∪α<βKα

where Kα = Kα/X, so K0 = 0 and for each α < β, Kα + 1/Kα
∼=

Yα+1/Yα
∼= B. Hence, by [4, Lemma 1], Ext1(K, X) = 0 when

Ext1(B,X) = 0. Then (⊥(S⊥),S⊥) = (⊥(B⊥),B⊥) has enough in-
jectives.

3 The projective dimension of complexes of R-modules

Recall that, an acyclic complex (F, (δn)n∈Z) of flat R-modules is
called flat if, for any n ∈ Z, ker δn is also flat R-module. We denote
by Flat(C(R)) the class of all flat complexes in A = C(R). We will
show that the cotorsion theory (Flat(C(R)),Flat(C(R))⊥) is a com-
plete in A. Let κ be a cardinal number such that κ ≥ max{|R|,ℵ0}.
Let X = (X i, δiX) and Y = (Y i, δiY), the complex Hom•(X,Y) is
defined as follows:

Hom•(X,Y)n =
∏
i∈Z

HomR(X i, Y i+n)

and its chain map is given by

δHom•(X,Y) = δY ◦ f − (−1)nf ◦ δX(f ∈ Hom•(X,Y)n).

Theorem 3.1 The cotorsion theory (Flat(C(R)),Flat(C(R))⊥) has
enough injectives.

Proof.
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Let F = (F i, δi) be a flat complex and n ∈ Z. Let T be a subset
of F n with |T | < κ. We find a flat subcomplex F0 = (F i

0, δ
i
0) of F

such that, T ⊆ F n
0 , |F0| ≤ κ and F

F0
is a flat complex.

Without loss of generality, let n = 0. There exists the following
commutative diagram

0
��

0
��

0
��

0 //K0
0

//

��

F 0
0

//

��

K1
0

//

��

0

0 //Ker(δ0) //F 0 //Ker(δ1) // 0,

of flat modules which is pure exact in rows and columns such that,
T ⊆ F 0

0 and max{|F 0
0 |, |K0

0 |, |K1
0 |} ≤ κ.

We use an inductive procedure to obtain, for every i ≤ 0, a pure ex-

act sequences 0 //Ki−1
0

//F i−1
0

//Ki
0
// 0, such that max{|F i−1

0 |, |Ki−1
0 |, |Ki

0|} ≤
κ. Set F 1

0 := K1
0 , F i

0 := 0, for all i > 1, and δi0 := δi|F i0 , for all i.

The complex F0 = (F i
0, δ

i
0) provides the required complex.

Hence, for a flat complex F, we can construct a continuous chain
{Fα | α ≤ γ} of flat subcomplexes of F with F = ∪α≤γFα such
that |F0| ≤ κ, for all α ≤ γ, |Fα+1

Fα
| ≤ κ and Fα+1

Fα
is a flat complex.

Let Y be representative set of flat complexes F with |F| ≤ κ. Then
(Flat(C(R)),Flat(C(R))⊥) cogenerated by Y and so by Proposition
2.2, it has enough injectives.

Corollary 3.1 The cotorsion theory (Flat(C(R)),Flat(C(R))⊥) is
complete.

Proof. The result follows from Theorem 3.1 and Proposition 2.1.

Recall that a ringR is called n-perfect if n = sup{cdF |F is a flat R-module} =
sup{pdF |F is a flat R-module}. In the remainder of this section we
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let R be an n-perfect ring.

Proposition 3.1 Let C be a complex of R-modules. Then C ∈
Flat(C(R))⊥ if and only if it is a complex of cotorsion R-modules.

Proof. Let C ∈ Flat(C(R))⊥. By [3], it is a complex of cotorsion
R-modules and Hom•(F,C) is an acyclic complex of R-modules
for each flat complex F.

Conversely, let C be a complex of cotorsion R-modules. Then the
cotorsion envelope 0 //C //C′ //F // 0 is degree-wise split. So,
F be a pure acyclic complex of cotorsion flat R-modules and hence
it is contractible by n-perfectness of R. Therefore Hom•(F,C) is
an acyclic complex for each F ∈ Flat(C(R)). Then by [3], C ∈
Flat(C(R))⊥.

Theorem 3.2 Let F be a flat complex and Y be a complex of R-
modules. Then Exti(F,Y) = 0, for each i > n.

Proof. Let Y be a complex of R-modules and

0 //Y //C0 //C1 // · · · //Cn−1δn−1
//Cn // · · ·

be it’s minimal cotorsion resolution by Proposition 3.1. Since Exti(F,Cj) =
0 for every flat complex F and i > 0, j ≥ 0, Then Extn(F,Y) ∼=
Ext1(F, Imδn−1). Since R is n-perfect then Imδn−1 is a complex
of cotorsion R-modules and hence it belongs to Flat(C(R))⊥ by
Proposition 3.1. Then Exti(F,Y) = 0, for each i > n.

Proposition 3.2 The ring R is n-perfect if and only if every com-
plex of R-modules has finite cotorsion dimension.

Proof.
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LetR be n-perfect, Y be anR-module and 0 //C //F′ //Y // 0
be the flat cover of Y. Then for any flat complex F we have the
following exact sequence

0 = Extn+1(F,C) //Extn+1(F,F′) //Extn+1(F,Y) //Extn+2(F,C) = 0.

Then Extn+1(F,Y) = 0 and hence cd Y ≤ n.

The converse is trivial.

Aknowledgements

The authors are deeply grateful to the referee for his/her careful
reading of the manuscript. We would like to thank the Islamic Azad
University, Gachsaran branch.

References

[1] M. Ansari and E. Hosseini, The behavior of homological
dimensions, Mathematics Scientific Journal Vol.7, No. 1, (2011),
1-10.

[2] S. E. Dickson, A torsion theory for abelian categories, Trans.
Amer. Math. Soc. 121, (1966), 223-235.

[3] E. Enochs, J. Garca Rozas, Flat covers of complexes, J. Algebra,
210,(1998), 86-102.

[4] P. Eklof, J. Trlifaj, How to make Ext vanish, Bull. London
Math. Soc, 33, no. 1 (2001), 44-51.

[5] R. Gobel, S. Shelah, Cotorsion theories and spliters, Trans.
Amer. Math. Soc. 352, No. 11, (2000), 5357-5379.

102



[6] L. Salce, Cotorsion theories for abelian groups, Symposia
Mathematica, Vol. XXIII (Conf. Abelian Groups and their
Relationship to the Theory of Modules, INDAM, Rome, 1977),
Academic Press, London, 1979, pp.11-32. 11.

[7] D. Simson, A remark on projective dimension of flat modules,
Math. Ann. 209 (1974), 181-182.

103


	Introduction
	Complete cotorsion theories in the category of complexes of R-modules
	The projective dimension of complexes of R-modules
	References

