تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,345,938 |
تعداد دریافت فایل اصل مقاله | 55,387,657 |
A Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations | ||
Theory of Approximation and Applications | ||
مقاله 1، دوره 8، شماره 1، مرداد 2014، صفحه 1-14 اصل مقاله (304.21 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
ل. هوشنگیان* 1؛ د. میرزایی2 | ||
1دانشگاه آزاد واحد دزفول | ||
2دانشکده ریاضی دانشگاه اصفهان | ||
چکیده | ||
This paper gives an ecient numerical method for solving the nonlinear system of Volterra-Fredholm integral equations. A Legendre-spectral method based on the Legendre integration Gauss points and Lagrange interpolation is proposed to convert the nonlinear integral equations to a nonlinear system of equations where the solution leads to the values of unknown functions at collocation points. | ||
مراجع | ||
[1] O. Diekman, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol. 6 (1978) 109{130 [2] B.G. Pachpatte, On mixed Volterra-Fredholm type integral equations, Indian J. Pure Appl. Math. 17 (1986), pp. 488{496. [3] L. Hacia, On approximate solution for integral equations of mixed type, ZAMM. Z. Angew. Math. Mech. 76 (1996) 415{416. [4] P.J. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations, Numer. Math. 56, (1989) 409{424. [5] L. Hacia, On approximate solving of the Fourier problems, Demonstratio Math. 12 (1979) 913{922. [6] H.R. Thieme, A model for the spatio spread of an epidemic, J. Math. Biol. 4 (1977) 337{351. [7] H. Guoqiang and Z. Liqing, Asymptotic expansion for the trapezoidal Nystrom method of linear Volterra- Fredholm equations, J. Comput. Appl. Math. 51 (3) (1994) 339{348. [8] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods, SIAM J. Numer. Anal. 27 (4)(1990) 987-1000. [9] H. Guoqiang, Asymptotic error expansion for the Nystrom method for a nonlinear Volterra-Fredholm integral equations, J. Comput. Appl. Math. 59 (1995) 490{59. [10] K. Maleknejad and M. Hadizadeh, A new computational method for Volterra-Fredholm integral iquations, Comput. Math. Appl. 37 (1999) 1-8. [11] M. Hadizadeh, Posteriori error estimates for the nonlinear Volterra- Fredholm integral equations, Comput. Math. Appl. 45 (2003) 677{687. [12] K. Maleknejad , M.R. Fadaei Yami, A computational method for system of Volterra-Fredholm integral equations, Appl. Math. Comput. 183 (2006) 589{595. [13] Gamal N. Elnagar, Mohammad A. Kazemi, A cell-averaging chebyshev spectral method for nonlinear fredholm-hammerstein integral equations, Int. J. Comput. Math. 60 (1996) 91{104. [14] Y.J.Jiang, On spectral methods for Volterra-type integro-dierential equations, J. Comput. Appl. Math. 230 (2009) 333{340. [15] M. Lakestani, B. N. Saray, M. Dehghan, Numerical solution for the weakly singular Fredholm integro-dierential equations using Legendre multiwavelets, J. Comput. Appl. Math. 235 (2011) 3291{3303. [16] F. Fakhar-Izadi, M. Dehghan, The spectral methods for parabolic Volterra integro-dierential equations, J. Comput. Appl. Math. 235 (2011) 4032{ 4046. [17] M. Tavassoli Kajani, S. Mahdavi, Numerical solution of nonlinear integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions, Mathematics Scientic Journal, 7 (2011) 97{105. [18] Y. Liu, Solving abel integral equation by using Chebyshev wavelets, Mathematics Scientic Journal, 6 (2010) 51{57. [19] Y. Mahmoudi, Chebyshev collocation method for integral equations with singular kernels, Mathematics Scientic Journal, 5 (2010) 41{49. [20] A. Shahsavaran, Numerical solution of linear Volterra and Fredholm integro dierential equations using Haar wavelets, Mathematics Scientic Journal, 6 (2010) 85{96. [21] T. Tang, Xiang Xu, Jin Cheng, On spectral methods for Volterra type integral equations and the convergence analysis, J. Comput. Math. 26 (2008) 825{837. 13 [22] Y. Chen, T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comput. 79 (2010) 147{167. | ||
آمار تعداد مشاهده مقاله: 687 تعداد دریافت فایل اصل مقاله: 595 |