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Abstract

Although homotopy-based methods, namely homotopy analysis method and
homotopy perturbation method, have largely been used to solve functional
equations, there are still serious questions on the convergence issue of these
methods. Some authors have tried to prove convergence of these methods, but
the researchers in this article indicate that some of those discussions are faulty.
Here, after criticizing previous works, a sufficient condition for convergence of
homotopy methods is presented. Finally, examples are given to show that even
if the homotopy method leads to a convergent series, it may not converge to
the exact solution of the equation under consideration.
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1 Introduction

The last two decades of analytic solution methods for solving func-
tional equations have been dominated by homotopy approaches.
Homotopy-based methods which are generally known to be ho-
motopy analysis method (HAM) [1] and homotopy perturbation
method (HPM) [2], are powerful methods which have proved their
efficiency through solving vast variety of functional equations. Ordi-
nary and partial differential equations, fractional differential equa-
tions, integral and integro-differential equations are the areas which
homotopy methods have been successfully applied. Especially, HAM
has been employed to solve some types of differential equations, for
the solution of which neither analytic methods nor numerical tech-
niques have been useful [3,4]. These facts prove the great potential
behind homotopy approaches.

Other than the known applications of homotopy methods in solving
functional equations, there have been some interesting innovations,
for example Abbasbandy and Liao have proposed a new Newton-
homotopy method, which is a generalization of the famous Newton-
Raphson method [5]. Also Liao has recently introduced a transform
called homotopy-transform, which he proves that Euler transform
is a special case of it [6]. The homotopy idea has also been used
for computing Laplace transform [7], Sumudu transform [8] and
Fourier transform [9]. Some other applications of HPM and HAM
could be found in [10–12] and the references therein.
Despite of these novel applications, there are still serious questions
concerning convergence of these methods. Attempts have been done
in this direction, but none of them have a universal result and
unfortunately some are mathematically wrong.

In almost all analytic and semi-analytic approaches, used for solv-
ing functional equations (of which homotopy-based ones are special
cases), there are two main concerns about the convergence of the
obtained solution, i.e. the convergence of the solution series in its
own right, and the convergence to the exact solution.
In order to establish the convergence problem more rigorously, a
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common terminology for HAM and HPM has been used in this
paper. Of course HAM has more auxiliary elements and is more
flexible in comparison with HPM, but this common framework is a
simple one that allows us to concentrate on the convergence issue
and is, hence, sufficient for our discussion.

Consider a nonlinear equation such as A(u) = 0, where A is an
operator and u is an unknown function to be determined. Suitably
choosing operator L (usually a linear operator), we construct the
”homotopy equation” as follows:

H(u, p) = (1− p)L(u) + pA(u) = 0. (1.1)

Assume that the solution of the homotopy equation could be pre-
sented as u(p) = u0 + u1p + u2p

2 + · · · . For p = 0 this equation is
equivalent to L(u) = 0. This equation should be an easy-to-solve
one, so this fact must be considered in choosing L. For p = 1 the
homotopy equation is A(u) = 0, i.e. the original equation.
As p → 1, the homotopy equation (1) converges to the original
equation, so we expect u(p) = u0 + u1p + u2p

2 + · · · to converge
to the solution of the original equation when p→ 1. However there
are issues which should be mentioned about this convergence.

The current paper generally discusses the convergence issue of ho-
motopy methods. In so doing, the previous works in this regard are
discussed and criticized in section 2. In the rest of the article the
reader will come across a couple of counterexamples on previous
convergence results, which modifies our classic thoughts on conver-
gence of homotopy-based methods. Later on, a theorem is presented
which gives sufficient conditions for convergence in special class of
functional equations.

2 Comments on previous results

Biazar and Ghazvini in [13] and Biazar and Aminikhah in [14] have
tried to prove the convergence of homotopy method, in the spe-
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cial case of HPM, through discussions based on Banach fixed point
theorem.

In [13], page 2634, the authors asserted that in the sequence ob-
tained from HPM the nth order approximation, i.e. Vn is dependent
upon the (n− 1)th order approximation Vn−1. This is not true, be-
cause when we use HPM for solving a nonlinear equation un, the
nth term of the iteration method is dependent upon previous terms
u0, u1, · · · , un−1 and not necessarily their sums. Thus, it is obvious
that the nth order approximation Vn is also dependent upon previ-
ous terms and not necessarily their sum. This is the fact that can
be easily seen in Example 1 and 3 in the same paper, where the
authors have given the governing equation for Vn in pages 2636 and
2639. In fact every nonlinear equation can be a counterexample for
their assertion.

The same assumption is used in paper [14], so from the above dis-
cussion it is obvious that the proposed assumption in those papers
are incorrect, therefore their results are invalid and useless.

In both papers, the presented examples are such that they satisfy
a contraction property that ensures convergence of the resulted se-
ries, if it is not the case we have no guarantee for convergence of
HPM. Actually both papers have a misusage of Banach fixed point
theorem.

In [15], Odibat uses an application of contraction mapping theo-
rem to prove convergence of HAM. In page 784, it is not clear why
the author has presented the initial guess in the special form (20).
The convergence criteria of Theorem 1, which is a famous result
of Banach’s fixed point theorem, is hard to check specially in the
cases where there is no general form for the series’ terms. Thus the
criteria is not practical for a method like HPM.
In page 785 the discussions on βi’s are faulty, one can simply check

the series Σx
i
. Here we have φi(x) = x

i
, so βi = ||φi+1||

||φi|| = 1/(
√
3(i+1))

1/(
√
3i)

=
i
i+1

< 1, but Σφi(x), is not convergent for any x but 0.
In both examples, which are given to assure discussed claims, the
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author has restricted the domain of the problem to [0, 1], this inter-
val simplifies the user to check the convergence criteria, however one
may fail to obtain efficient results for the original domain, namely
[0,∞].

In HAM case there is a well known theorem by Liao [16] which
reduces the convergence problem to the convergence of the resulted
series. His claim is as follows:

Theorem 2.1: [9, Theorem 2.1 and Theorem 3.3] Whenever the
solution series obtained by the homotopy analysis method is conver-
gent, it would converge to the exact solution of the equation under
study.

However there is a mathematical problem with his proof. Liao has
an incorrect assumption that whenever Σun(t) are convergent then
Σu′n(t) would also converge. For rejecting this claim consider the
series of functions Σun(t), where un(t) = (tn)/n2, this series con-
verges at t = 1, but Σu′n(t) is not convergent at the same point

(as another example Σun(x), with un(x) = sin(nx)
n2 is convergent on

R, but Σu′′n(t) is not convergent at any point x). So the following
discussion in those theorems are useless.

On the other side in HPM or HAM we replace a nonlinear equation
with infinitely linear equations, where in the case of differential
equation, the order of L is not necessarily the order of the original
equation [17,18]. So in using HPM or HAM, for solving differential
equations, we may not apply all initial/boundary conditions of the
equation under study for its resulted sub equations. This guides us
to the fact that, sometimes, the final solution of HPM or HAM is a
solution which does not satisfy the initial/boundary conditions, so
is not the solution of the main equation.

Next section gives counterexamples to reject Theorem 2.1, then a
modification of the theorem is presented.
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3 Counterexamples and a modified convergence theorem

The following examples show that the solution of homotopy method
is not always the solution of the main equation under study, even
if the convergence radius of homotopy solution is more than 1.

Example 3.1: Consider the Laplace equation uxx+uyy = 0, subject
to Neumann boundary conditions:

uy(x, 0) = 0, uy(x, π) = 0,

ux(0, y) = cos(y), ux(π, y) = cosh(π)cos(y).

The exact solution of the equation is u(x, y) = sinh(x)cos(y).
We illustrate the HPM case which is more simple. Let L(u) = uyy,
so the homotopy equation will be:

H(u, p) = (1− p)L(u) + pN(u) = 0,

or

H(u, p) = uyy + puxx = 0.

By substituting u = u0 +u1p+u2p
2 + · · · in the homotopy equation

and doing homotopy solution process we would have:

u0yy = 0, u0y(x, 0) = 0, u0y(x, π) = 0,

u1yy = −u0xx, u1y(x, 0) = 0, u1y(x, π) = 0,

u2yy = −u1xx, u2y(x, 0) = 0, u2y(x, π) = 0,
...

Solving the above equations, considering boundary conditions (BC),
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we have:

u0 = f0(x)y + g0(x)
BC−−→ f0(x) = 0

=⇒ u0 = g0(x)

u1 = g0(x)y2/2 + f1(x)y + g1(x)
BC−−→ g′′0(x) = 0, f1(x) = 0,

=⇒ g0(x) = a0x+ b0, u1 = g1(x).

Solving other equations as well we get ui = aix + bi, for i =
0, 1, 2, · · · .
Now we have u = u0 +u1 +u2 + · · · = (

∑
ai)x+(

∑
bi). It is obvious

that even if
∑
ai,

∑
bi, are convergent, still this is not the solution

of the main equation.

Example 3.2: Consider the heat equation:

ut − 9uxx = 0,

u(x, 0) = sin(x), u(o, t) = 0, u(
π

2
, t) = 1.

The exact solution of this equation is
u(x, t) = 2

π
x+

∑∞
n=1Bne

−36n2tsin(2nx), where Bn’s are the Fourier
coefficients for the sin(x)− 2

π
x, i.e.

Bn = 2
∫ 1
0 (sin(x)− 2

π
x)sin(2nx)dx

In this equation we have two choices for L, namely Lu = ut, Lu =
−9uxx. We will show that in both cases, the solution of homotopy
method is convergent, but does not satisfy initial and boundary
conditions simultaneously, so the convergence of the series does not
imply that it is the exact solution of the equation.
Case 1: Lu = ut.
In this case the homotopy equation will be as follows:

H(u, p) = (1− p)ut + p(ut − 9uxx) = 0,

or
H(u, p) = ut − 9puxx = 0.

By the assumption u = u0 +u1p+u2p
2 + · · · , we have the following

sub equations:
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u0t = 0, u0(x, 0) = sin(x),

u1t = 9u0xx, u1(x, 0) = 0,

u2t = 9u1xx, u2(x, 0) = 0,
...

...

solving the above equations we have:

u0 = sin(x),

u1 = −sin(x)(9t),

u2 = sin(x) (9t)
2

2
,

u3 = −sin(x) (9t)
3

3!
,

...

so the final solution is

u = u0 + u1 + u2 + · · ·

= sin(x)(1− 9t+ (9t)2

2!
+ (9t)3

3!
+ · · · )

= sin(x)e−9t.

It is obvious that sin(x)e−9t is not the exact solution of the above
heat equation.
Case 2: Lu = −9uxx.
In this case the homotopy equation will be as follows:

H(u, p) = (1− p)(−9uxx) + p(ut − 9uxx) = 0,

or

H(u, p) = put − 9uxx = 0.

By the assumption u = u0 +u1p+u2p
2 + · · · , we have the following

sub equations:
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u0xx = 0, u0(0, t) = 0, u0(
π
2
, t) = 1,

u1xx = 1
9
u0t, u1(0, t) = u1(

π
2
, t) = 0,

u2xx = 1
9
u1t, u2(0, t) = u2(

π
2
, t) = 0,

...

solving the above equations we have:

u0 = 2
π
x,

u1 = 0,

u2 = 0,

u3 = 0,
...

so the final solution would be u = u0 + u1 + u2 + · · · = 2
π
x which is

not the exact solution.

Now we can modify the convergence theorem as follows:

Theorem 3.3: Consider the equation A(u(t)) = 0, for t ∈ [a, b].
Here A is an integral operator. If the solution of the homotopy
method, u(t, p) = u0 + u1(t)p + u2(t)p

2 + · · · , ((ui(t)’s are con-
tinuous in [a, b])), is convergent at p = 1 and this convergence is
uniform on [a, b], then u(t, 1) is the solution to the main equation.

Proof. Consider that A = L+N , so equation (1) can be rewritten
as:

H(u, p) = L(u) + pN(u) = 0, (3.1)

where L is linear. Let u(p) = u0+u1p+u2p
2+· · · represent solution

to (2), as we know ui’s are obtained from the sub equations of the
homotopy methods (both HPM and HAM) as follows:
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Lu0 = 0

Lu1 = −N(u) at p = 0

Lu2 = −∂N(u)

∂p
at p = 0

Lu3 = −∂
2N(u)

2!∂p2
at p = 0

... (3.2)

Let Nk = ∂kN(u)
k!∂pk

, at p = 0. Taking the sum of the above equations
we have:

Σ∞k=0L(uk) = −Σ∞k=0Nk. (3.3)

Now because of uniform convergent of ui’s, we can change the order
of integration and sigma i.e. Σ∞k=0L(uk) = L(Σ∞k=0(uk)) = L(u(1)).
Moreover from the Taylor expansion we have, N(u(p)) = Σ∞k=0Nkp

k,
and for p = 0, we have N(u(1)) = Σ∞k=0Nk. Now the equation (3)
is L(u(1)) +N(u(1)) = 0, or A(u(1)) = 0. 2

For operators like differentiation we need more assumption to guar-
antee the convergence. As we know HPM is a special case of HAM
for h = −1, so results of convergence on HAM must be valid for
HPM too.
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