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Abstract

Envelopment Analysis (DEA) is a very effective method to evaluate the relative efficiency of decision-

making units (DMUs). DEA models divided all DMUs in two categories: efficient and inefficient

DMUs, and don’t able to discriminant between efficient DMUs. On the other hand, the observed

values of the input and output data in real-life problems are sometimes imprecise or vague, such

as interval data, ordinal data and fuzzy data. This paper develops a new ranking system under the

condition of constant returns to scale (CRS) in the presence of imprecise data, In other words, in

this paper, we reformulate the conventional ranking method by ideal point as an imprecise data

envelopment analysis (DEA) problem, and propose a novel method for ranking the DMUs when the

inputs and outputs are fuzzy and/or ordinal or vary in intervals. For this purpose we convert all

data into interval data. In order to convert each fuzzy number into interval data we use the nearest

weighted interval approximation of fuzzy numbers by applying the weighting function and also we

convert each ordinal data into interval one. By this manner we could convert all data into interval

data. The numerical example illustrates the process of ranking all the DMUs in the presence of fuzzy,

ordinal and interval data.
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1 Introduction

In evaluating the relative efficiency of each Decision making units (DMUs)
by DEA, we obtain scores between zero and one. Therefore, DEA models
discriminate DMUs into two categories: efficient DMUs and inefficient
DMUs. In this way, usually more than one unit may be efficient in the
DEA models and their scores are 1. Although efficiency score can be a
criterion for ranking inefficient DMUs, this criterion cannot rank efficient
DMUs. Therefore, the researchers proposed some methods to difference
these efficient units. This concept has named ranking efficient units in
the DEA. Therefore selecting the best ranking method or the way of
combining different ranking methods for ranking DMUs is an important
point in ranking DMUs in DEA. Several authors have proposed methods
for ranking the best performers. For a review of ranking methods, readers
are referred to Adler et al. [1]. In some cases, the models proposed by
Andersen and Petersen [2] and Mehrabian et al. [34] can be infeasible.
In addition to this difficulty, the Andersen and Petersen model may be
unstable because of extreme sensitivity to small variations in the data
when some DMUs have relatively small values for some of their inputs.
Jahanshahloo et al. [23] present a method for ranking extreme efficient
decision making units in data envelopment analysis models with constant
and variable returns to scale. In their method, they exploit the leave-one-
out idea and l1-norm also, Jahanshahloo et al. [24] proposed a ranking
system for extreme efficient DMUs based upon the omission of efficient
DMUs from reference set of the inefficient DMUs. Li et al. [31] developed
a super-efficiency model to overcome some deficiencies in the earlier mod-
els. Izadikhah [19] proposed a method for ranking decision making units
with interval data by introducing two efficient and inefficient frontiers.
Wang et al. [42] proposed a methodology for ranking decision making
units. That methodology ranks DMUs by imposing an appropriate min-
imum weight restriction on all inputs and outputs, which is decided by a
decision maker (DM) or an assessor in terms of the solutions to a series
of linear programming (LP) models that are specially constructed to de-
termine a maximin weight for each DEA efficient unit. Liu and Peng [33]
proposed a methodology to determine one common set of weights for the
performance indices of only DEA efficient DMUs. Then, these DMUs are
ranked according to the efficiency score weighted by the common set of
weights. For the decision maker, this ranking is based on the optimization
of the group’s efficiency. Jahanshahloo et al. [21] proposed two ranking
methods. In the first method, an ideal line was defined and determined
a common set of weights for efficient DMUs then a new efficiency score
obtained and ranked them with it. In the second method, a special line
was defined then compared all efficient DMUs with it and ranked them.
Wang et al. [41] proposed a new methodology based on regression anal-
ysis to seek a common set of weights that are easy to estimate and can
produce a full ranking for DMUs. Chen and Deng [5] proposed a new
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method for ranking units. Their method develop a new ranking system
under the condition of variable returns to scale (VRS) based on a mea-
sure of cross-dependence efficiency, where the evaluation for an efficient
DMU is dependent of the efficiency changes of all inefficient units due to
its absence in the reference set, while the appraisal of inefficient DMUs
depends on the influence of the exclusion of each efficient unit from the
reference set. Recently, Rezai Balf et al. [35] proposed a method for rank-
ing extreme efficient decision making units (DMUs). Their method uses
L∞ or (Tchebycheff) Norm, and it seems to have some superiority over
other existing methods, because this method is able to remove the ex-
isting difficulties in some methods, such as Andersen and Petersen (AP)
that it is sometimes infeasible. Hosseinzadeh Lotfi et al. [18] proposed
a methodology for ranking decision making units by using a goal pro-
gramming model. Hosseinzadeh Lotfi et al. [17] proposed a method for
ranking DMUs. They consider some CCR efficient DMUs, and then rank
them by using some ranking methods, each of which is important and
significant. Afterwards, by using TOPSIS method, they suggested the
ranks of efficient DMUs. Jahanshahloo et al. [22] proposed some differ-
ent methods and compared them. The original DEA models [3] assumed
that inputs and outputs are measured by exact values on a ratio scale this
assumption may not be valid i.e. some or all of inputs and outputs may
be imprecise. ”Imprecise data” implies that some data are known only to
the exact that the true values lie within prescribed bounds while other
data are known only in terms of ordinal relations. Ordinal data is one of
the imprecise data. Cooper et al [9] discuss how to deal with bounded
data and weak ordinal data and provide a unified IDEA model when
weight restrictions are also present. Cook et al. [8] mixtures of exact and
ordinal data. In addition to it, in this context, one can read Cook et al.
[6,7], and Zhu [46]. The imprecise data representation with interval, ordi-
nal, and ratio interval data was initially proposed by Cooper et al. [9,11]
to study the uncertainty in DEA. Soon after, many researchers adopted
the concept and proposed different DEA models with interval data in
the DEA literature [12,15,26,39,40]. Due to the existence of uncertainty,
DEA sometimes faces the situation of imprecise data, especially when a
set of DMUs contain missing data, ordinal data, interval data, or fuzzy
data. Therefore, how to evaluate the efficiency of a set of DMUs in inter-
val environments is a problem worth studying. Cooper et al. [9,11] were
the first to study how to deal with imprecise data such as bounded data.
Kim et al. [28] also used an analogous scale transformation and variable
alternation method, but they did not take the interval data situation into
account. Lee et al. [29] extended the idea of IDEA (imprecise DEA) to
the additive model. Despotis and Smirlis [12] also studied the problem of
IDEA, but developed an alternative approach for dealing with imprecise
data in DEA. Entani et al. [15] proposed a DEA model with interval
efficiencies measured from both the optimistic and the pessimistic view-
points. In these studies, the great majority of input and output variables
focus on crisp data, and they cannot easily measure linguistic terms. Kao
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and Liu [?] argue that we cannot gather crisp data because respondents
cannot easily decide on the values by means of intuition. Sengupta [38]
is considered the pioneer in solving these kinds of issues; he proposed a
fuzzy objective function and constraints using results from Zimmermann
[43,44]. Though fuzzy concepthas been applied to many fields and easy
to adopt, as such, some research works attempted to solve the problems
with the limitation of conventional data envelopment analysis (DEA) by
introducing the fuzzy concepts (Cooper, Park, and Yu, [9]; Despotis and
Smirlis [12]; Guo and Tanaka, [16]; Jahanshahloo et al. [25]. Cooper et
al. [9] addressed the problem of imprecise data in DEA in its general
form. Furthermore, Despotis and Smirlis [12] calculated upper and lower
bounds for the radial efficiency scores of DMUs with interval data. Al-
though DEA offers many advantages relative to many other statistical
approaches, some limitations have to be considered. One important prob-
lem involves its sensitivity to data, so we should have accurate measure-
ment of inputs and outputs in order to successfully apply DEA. However,
in many situations, such as in a manufacturing system, a production pro-
cess or a service system, inputs and outputs are volatile and complex so
that it is difficult to measure them in an accurate way. Instead the data
can be given as a fuzzy variable. Many fuzzy approaches have been in-
troduced in the DEA literature [9,11,15,27]. Recently, Guo and Tanaka
[16] and Lertworasirikul et al. [30] applied possibility measure proposed
by Zadeh [45] to the fuzzy DEA model. Although possibility measure
has been widely used, it has no self-duality property which is absolutely
needed in both theory and practice. In order to define a self-dual measure,
Liu and Liu [32] presented credibility measure in 2002. This paper will
extend the CCR model to a fuzzy DEA model based on credibility mea-
sure, and then give a fuzzy ranking method to rank all the DMUs with
fuzzy inputs and outputs. Recently, Jahanshahloo et al. [21] proposed
a method for ranking DMUs with interval data. For ranking with crisp
data, they first calculate the ideal point of each DMU and a special DMU,
then they measure the distance of the ideal point from the special DMU;
a DMU has a better rank if it has a shorter distance. Therefore they
could rank non-extreme DMUs, as well. And also they generalized their
method for interval data. Rostamy-Malkhalifeh and Aghayi [36] present
a new method for ranking Units based on their overall profit efficiency.
This ranking is also used for DMUs with interval data. The proposed
method is used by AP model and l1norm with interval data. They pro-
posed two models for finding rank of DMUs by evaluation through AP
model and also we introduce two models for comparing efficient DMUs
in optimistic and pessimistic prices by l1-norm. Therefore, in this paper
we develop a methodology for ranking DMUs in the presence of fuzzy
and ordinal data by using ideal points. For doing this we convert each
fuzzy and ordinal data into interval one.
Rest of the paper is organized as follows: In section two, we review some
basic concept about basic definitions and notions about classic DEA mod-
els, Imprecise data and Ranking DMUs by ideal points with interval data.
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In section three, we will focus on the proposed method. In section four,
numerical examples are demonstrated. And finally, the conclusion is dis-
cussed in Section five.

2 Preliminaries

In this section we present some required concepts. First, we assume that
there are DMUs, where each DMUj (j=1,. . . ,n), uses m different inputs,
xij (i=1,. . . ,m), to produce s different outputs, yrj (r=1,. . . ,s). We as-
sume that the data set are positive and deterministic.

2.1 Classic DEA models

In this section we review some classic DEA models.

2.1.1 Input-oriented CCR model

One the basic model used to evaluated DMUs is the input-oriented CCR
model introduced by Charnes et al. [4], the CCR efficiency is obtained
by calculating following model:

min θo

s.t.
n∑
j=1

λjxij ≤ θoxio, i = 1, . . . ,m,

n∑
j=1

λjyrj ≥ yro, r = 1, . . . , s,

λ ≥ 0

(2.1)

Model (2.1) known as envelopment form of CCR model. Dual form of
model (2.1), which known as multiplier form of CCR is expressed as fol-
lows:
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Max
s∑
r=1

uryro

s.t.
m∑
i=1

vixio = 1

s∑
r=1

uryrj −
m∑
i=1

vixij, j = 1, . . . , n,

vi, ur ≥ 0 i = 1, . . . ,m, r = 1, . . . , s

(2.2)

Definition 2.1 DMUo is CCR-efficient if:

1. θ∗o = 0

2. All slack variables are zero in alternative optimal solution.

2.1.2 Ranking model

Super-efficiency model introduced be Andersen and Petersen for ranking
efficient units is defined as follows:

min θo − ε(
m∑
i=1

s−i +
m∑
i=1

s+
r )

s.t.
n∑

j=1,j 6=o
λjxij + s−i = θoxio, i = 1, . . . ,m,

n∑
j=1,j 6=o

λjyrj − s+
r = yro, r = 1, . . . , s,

λj, s
−
i , s

+
r ≥ 0, j = 1, . . . , n, i = 1, . . . ,m, r = 1, . . . , s

(2.3)
Efficient DMUs have super-efficiency score greater than or equal to 1,
while inefficient score DMUs have super-efficiency score less than 1.
AP model, in some cases, breaks down with zero data and may be un-
stable because of extreme sensitivity to small variation in the data when
some DMUs have relatively small values for some of its inputs.

2.2 Imprecise data

In this section we discuss about imprecise data, and how to convert them
into interval data.
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2.2.1 Ordinal data and converting them into interval data

In this section, we consider the transformation of ordinal preference in-
formation about the output and input yrj and xij (j = 1, ..., n).
For weak ordinal preference information yr1 > ... > yrn and xi1 > ... >
xin ,we have the following ordinal relationships after scale transformation:

1 > ŷr1 > ... > ŷrn > σr and 1 > x̂i1 > ... > x̂in > εi

Where σr is a small positive number reflecting the ratio of the possible
minimum of 〈xij|j = 1, ..., n〉 to its possible maximum. It can be ap-
proximately estimated by the decision maker. It is referred as the ratio
parameter for convenience. The resultant permissible interval for each
x̂ij, ŷrj is given by:

ŷrj ∈ [σr, 1], (j = 1, ..., n)
x̂ij ∈ [εi, 1], (j = 1, ..., n)

For strong ordinal preference information:

1 > ŷrj, ŷrj > χrŷrj+1 , (j = 1, ..., n− 1)and ŷrj > σr (2.4)

1 > x̂ij, x̂ij > ηrx̂ij+1 , (j = 1, ..., n− 1)and x̂ij > εi (2.5)

Where εi and σr are preference intensity parameters satisfying χr, ηi >
1,provided by the decision maker and εi,σr are the ratio parameters also
provided by decision maker. The resultant permissible interval foe each
ŷrjandx̂ijcan be derived as follows:

ŷrj ∈ [σrχ
n−j
r , χ1−j

r ] , j = 1, ..., n with σr 6 χ1−n
r

(2.6)

x̂ij ∈ [εiη
n−j
i , η1−j

i ] , j = 1, ..., n with εi 6 η1−n
r

(2.7)

So all the ordinal preference infirmations converted into the interval data.

Remark 2.1 We will mention each input and output that is definitive
transform into interval data as follow:

xij ∈ [xLij, x
U
ij] where x

L
ij = xUij = xij

yrj ∈ [yLrj, y
U
rj] where y

L
rj = yUrj = yrj

(2.8)

2.2.2 Fuzzy numbers

In this subsection we review some definitions and notions about fuzzy
numbers and possibility space. And after that we review the nearest
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weighted interval approximations.

2.2.3 Basic definitions and notions about fuzzy numbers and possibility
space

Let R be the set of all real numbers. We assume that a fuzzy number A
for all x ∈ R can be expressed as follows:

A(x) =



AL(x), x ∈ [a, b];

1, x ∈ [b, c];

AR(x), x ∈ [c, d];

0, Otherwise.

(I)

Where a, b, c and d are real numbers such that a < b ≤ c < d,ALis
real-valued function that is increasing and right continuous and AR is a
real-valued function that is decreasing and left continuous. Notice that
(I) is an L-R fuzzy number with strictly monotone shape function as
proposed by Dubois and Prade in 1981, and also described in Dubois and
Prade [13,14]. Each fuzzy number A described by (I) has the following
α−level sets (α− cut).

Definition 2.2 We denote an α− cut of fuzzy number a by Aα which in
defined as:

Aα = {x|A(x) ≥ α} (2.9)

an α− cut of a can be stated as Aα = [A−1
L (α), A−1

U (α)] = [a(α), a(α)] for
all α ∈ [0, 1].

We denote the family of fuzzy numbers by ξ.

Example 2.1 Let A ∈ ξ be a fuzzy number with the following member-
ship function

A =

A = 1− { (x−5)2

4
, 3 ≤ x ≤ 7;

0, Otherwise.

then the α− cut ofA is as follow:

Aα = [a(α), ā(α)] = [5− 2
√

1− α, 5 + 2
√

1− α], α ∈ [0, 1] (2.10)
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Fig. 1. The membership functions of Fuzzy numbers

Definition 2.3 A fuzzy number A = (a, b, c, d) is called a trapezoidal
fuzzy number if its membership function A(x) has the following form:

A(x) =



x−a
b−a , x ∈ [a, b];

1, x ∈ [b, c];

d−x
d−c , x ∈ [c, d];

0, Otherwise.

(II)

if b = c, then A = (a, b, c) is a triangular fuzzy number (see Fig. 1).

2.2.4 The nearest weighted interval approximations

In this subsection, we recall the concept of the nearest weighted interval
approximation to a fuzzy number. The information of this section are
taken from [37].

Definition 2.4 A weighting function is a function as
f = (f, f : ([0, 1], [0, 1])) −→ (R,R) such that the function f, f are non-
negative, monotone increasing and satisfies the following normalization
condition(see Saeidifar (2011)):∫ 1

0 f(α)dα =
∫ 1

0 f(α)dα

Note that if g = (g, g) : ([0, 1], [0, 1])) −→ (R,R) is a function that is
non-negative and monotone increasing, then we can consider

f(α) =
g(α)∫ 1

0
g(α)dα

, f(α) = g(α)∫ 1

0
g(α)dα

Remark 2.2 The function f(α) can be understood as the weight of our
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interval approximation, the property of monotone increasing of function
f(α) means that the higher the cut level is, the more important its weight
is in determining the interval approximation of fuzzy numbers. In appli-
cations, the function f(α) can be chosen according to the actual situation.

Definition 2.5 Let A ∈ ξbe a fuzzy number with Aα = [a(α), ā(α)] and
f(α) = (f(α), f(α)) be a weighted function. Then the nearest f = (f, f)−
weighted interval approximation of A is defined as, Then the interval:

NWIAf (A) = [Cf
L, C

f
U ] = [

∫ 1

0
f(α)dα,

∫ 1

0
f(α)dα] (2.11)

Where, Cf
L is the nearest lower weighted point approximation (NLWPAf (A))

and Where, Cf
U is the nearest upper weighted point approximation

(NLWPAf (A))of fuzzy number A.

Theorem 2.1 Let A ∈ ξbe a fuzzy number with Aα = [a(α), ā(α)] and
f(α) = (f(α), f(α)) be a weighted function. Then, the interval

NWIAf (A) = [NWIAf (A), NWIAf (A)]

Is the nearest weighted interval approximation to fuzzy number A.

Obviously, the weighted interval approximation defined by Eq.(2.11) syn-
thetically reflects the information on every membership degree. Its ad-
vantage is that different α− cut set plays different roles.

Theorem 2.2 Let A,B ∈ ξ, let f(α) = (f(α), f(α)) be a weighting func-
tion, and let λ ∈ R then we have:

NWIAf (A+B) = NWIAf (A) +NWIAf (B)

NWIAf (λA) = λNWIAf (A)
(2.12)

Corollary 2.1 Let A = (a, b, c, d) be a trapezoidal fuzzy number, and
f(α) = (f(α), f(α)) be a weighting function. Then
1.for f(α) = (1, 1):

NWIAf (A) = [a+b
2
, c+d

2
] (2.13)

2. for f(α) = (2α, 2α):

NWIAf (A) = [a+2b
2
, 2c+d

2
] (2.14)
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Fig. 2. Fuzzy number (Ex. 2)

3. for f(α) = (nαn−1, nαn−1), n ∈ N(natural number:

NWIAf (A) = [a+nb
2
, nc+d

2
] (2.15)

Example 2.2 Let a A = (3, 4, 7) be a triangular fuzzy number and also
f1(α) = (2α, 2α) and f2(α) = (4α3, 4α3) be two weighting functions.
Then the nearest weighted interval to A is as follows (see Fig. 2):

NWIAf1 = [
11

3
, 5], NWIAf2 = [

19

5
,
23

5
] (2.16)

Example 2.3 Let a A = (3, 7, 8, 13) be a trapezoidal fuzzy number and
also f1(α) = (2α, 2α) and f2(α) = (4α3, 4α3) be two weighting functions.
Then the nearest weighted interval to A is as follows (see Fig. 3):

NWIAf1 = [
17

3
,
29

3
]NWIAf2 = [

31

5
, 9] (2.17)

Example 2.4 Let A be a fuzzy number with the following membership
function

Ã =

A = 1− { (x−5)2

4
, 3 ≤ x ≤ 7;

0, Otherwise.

And let f1(α) = (2α, 2α) and f2(α) = (4α3, 4α3) be two weighting func-
tions.Then the nearest weighted interval to A is as follows (see Fig. 4):

NWIAf1 = [
59

15
,
91

15
]NWIAf1 = [

1319

315
,
1831

315
] (2.18)
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Fig. 3. Fuzzy number (Ex. 3)

Fig. 4. Fuzzy number (Ex. 4)

2.3 Ranking DMUs by ideal points with interval data

In this section, unlike the original DEA model, we assume further that
the levels of inputs and outputs are not known exactly, the true input
and output data known to lie within bounded intervals, i.e.xij ∈ [xLij, x

U
ij]

and yrj ∈ [yLrj, y
U
rj] with upper and lower bounds of the intervals given as

constants and assumed strictly positive i.e.xLij > 0 and yLrj > 0.
In this case, the efficiency can be an interval. The upper limit of interval
efficiency is obtained from the optimistic viewpoint and the lower limit
is obtained from the pessimistic viewpoint. The following model provides
such an upper bound for DMUo:

θUo = max
U,V

=

UT [Y l
o ,Y

U
o ]

V T [Y l
o ,Y

U
o ]

max
j

UT [Y l
j , Y

U
j ]

V T [Y l
j , Y

U
j ]

U > 0, V > 0 (2.19)

Where vector-variables U and V are weights for outputs and inputs, re-
spectively, which to be estimated.We denote by θUo the efficiency score
attained by DMUo in (2.19). The model below provides a lower bound
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of the efficiency score for DMUo:

θLo = min
U,V

=

UT [Y l
o ,Y

U
o ]

V T [Y l
o ,Y

U
o ]

max
j

UT [Y l
j , Y

U
j ]

V T [Y l
j , Y

U
j ]

U > 0, V > 0 (2.20)

Since, above mentioned models are non-linear;we obtain the upper(HU
o )

and lower (LUo ) bound of θUo , and the upper (HL
o ) and lower (LLo ) bound

of θLo .

HU
o = max

U,V

UTY U
o

V TXL
o

s.t. max(max
j 6=o

UTY l
j

V TXU
j
, U

TY U
o

V TXL
o

) = 1

U > 0, V > 0

(2.21)

HL
o = min

U,V

UTY U
o

V TXL
o

s.t. max(max
j 6=o

UTY l
j

V TXU
j
, U

TY U
o

V TXL
o

) = 1

U > 0, V > 0

(2.22)

LUo = max
U,V

UTY L
o

V TXU
o

s.t. max(max
j 6=o

UTY U
j

V TXL
j
, U

TY L
o

V TXU
o

) = 1

U > 0, V > 0

(2.23)

LLo = min
U,V

UTY L
o

V TXU
o

s.t. max(max
j 6=o

UTY U
j

V TXL
j
, U

TY L
o

V TXU
o

) = 1

U > 0, V > 0

(2.24)

These models easily can be simplified according to Jahanshahloo et al.
[21] and [?]. According to Jahanshahloo et al. [21], the ideal points with
interval data for can be defined as follows:

x̄Lio = min
r
{ Y L

ro

max
j

yUrj
xLij

}, i = 1, ...,m,
(2.25)

x̄Uio = min
r
{ Y U

ro

max
j

yLrj
xUij

}, i = 1, ...,m,
(2.26)
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ȳLro = max
j
{(max

j

yLrj
xUij

xLio)}, r = 1, ..., s, (2.27)

ȳUro = max
j
{(max

j

yUrj
xLij

xUio)}, r = 1, ..., s, (2.28)

On the basis of the above efficiency score intervals, DMUs can be classi-
fied in three subsets as follow:
E++ = {j ∈ a, ..., n|LUo = 1}
E+ = {j ∈ a, ..., n|LUo < 1, HU

o = 1}
E− = {j ∈ a, ..., n|HU

o < 1}
Also, we calculate the special DMU by the following relations:

x̃i = max( max
j∈E++

x̄Uij),max
j
xUij,

ỹr = max( max
j∈E++

ȳLrj),max
j
yLrj.

(2.29)

Then, we calculate the distance of the ideal point ofDMUo in its best
situation(X̄L

o , (̄y)Uo ) from the special DMU(Γgo) and the distance of the
ideal point of in its worst situation from (X̄U

o , (̄y)Lo ) the special DMU(Γbo)
by the following models:

Γgo = min ( 1
m

m∑
i=1

θi)/(
1

s

s∑
r=1

φr)

s.t. x̃io = θix̄
L
io, i = 1, ...,m,

ỹro = φrȳ
U
ro, r = 1, ..., s

(2.30)

Γbo = min ( 1
m

m∑
i=1

θi)/(
1

s

s∑
r=1

φr)

s.t. x̃io = θix̄
U
io, i = 1, ...,m,

ỹro = φrȳ
L
ro, r = 1, ..., s

(2.31)

Hence, we define a ranking criterion for DMUs as follows:

Ψo = Γgo + Γgb , (2.32)

By attention to Jahanshahloo et al. [21], we know that the rank of DMUo
is better than other’s if it has a lower Ψo.
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Table 1
The data set.

I1 I 2 I3 I4 O1 O2 O3 O4

1 252 6 (3,5.5,8) 134 [48,53] 1 [3119,3122] 64

2 253 7 x̃23 134 [44,50] 3 [3120,3126] 51

3 248 2 x̃33 127 [55,56] 14 [3141,3141] 78

4 253 11 (3,7.5,10) 134 [47,52] 13 [3110,3132] 55

5 251 14 x̃53 134 [46,50] 2 [3130,3139] 53

6 250 12 (5,6,7,8.5) 131 [48,51] 10 [3115,3121] 52

7 252 5 x̃73 132 [47,53] 5 [3124,3125] 69

8 250 3 x̃83 131 [42,51] 12 [3129,3138] 62

9 248 1 x̃93 127 [55,56] 15 [3140,3141] 79

10 254 15 x̃10,3 132 [49,55] 6 [3120,3139] 60

11 252 8 (6,8.5,11.5) 134 [47,53] 7 [3127,3138] 64

12 253 9 (2,5,6,7) 132 [48,54] 9 [3124,3137] 59

13 250 10 (6.8,7.8,9.8) 130 [48,55] 11 [3119,3134] 67

14 251 4 (6.7,9.7,10.2,12.3) 131 [43,51] 4 [3121,3136] 61

15 250 13 (5.7,7.4,9.7) 130 [42,50] 8 [3128,3135] 60

3 An algorithm for ranking DMUs in the presence of fuzzy and
ordinal data

We assume that, there are n homogeneous DMUs, and each DMUj uses
minputs (i = 1, ,m) to produce s outputs (r = 1, ..., s).We also assume
that inputs and outputs aren’t necessarily deterministic and they may
be are as definitive, fuzzy,ordinal or interval data.
We consider five steps achieve for ranking these DMUs and total results:
Step 1: Firstly, by using the formula (2.6),(2.7),(2.8)and (2.11) we can
convert all of the data into interval data. Therefore each input xij as
from [xLij, x

U
ij] and output yrj as from [yrj, y

L
rj, y

U
rj]. Step 2: By using the

formula(2.25)-(2.28), we achieve the Ideal point for interval data.
Step 3: By using the formula (2.29), special point can be obtained.
Step 4:By using the formula (2.30) and (2.32), we calculate the value of
Γbo and Γgo
Step 5:For each DMUo we calculate the value of as follows:

Ψo = Γbo + Γgo
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Table 2
The interval form of Input data of the Table 1.

I1L I2U I2L I2U I3L I3U I4L I4U

1 252 252 0.112 0.387 4.875 6.125 134 134

2 253 253 0.125 0.43 1.375 3.447 134 134

3 248 248 0.074 0.254 0.75 1.724 127 127

4 253 253 0.191 0.656 6.375 8.125 134 134

5 251 251 0.262 0.9 4.086 5.914 134 134

6 250 250 0.212 0.729 5.75 7.375 131 131

7 252 252 0.101 0.348 1.857 2.143 132 132

8 250 250 0.082 0.282 2.212 4.143 131 131

9 248 248 0.066 0.228 0.857 2.143 127 127

10 254 254 0.291 1 2.644 3.356 132 132

11 252 252 0.139 0.478 7.875 9.25 134 134

12 253 253 0.154 0.531 4.25 6.25 132 132

13 250 250 0.172 0.59 7.55 8.3 130 130

14 251 251 0.091 0.313 8.95 10.725 131 131

15 250 250 0.236 0.81 6.8 7.975 130 130

Step 6: We can rank the DMUs by using the value of Ψo. The best-rank
DMU is the one with the minimum value of Ψo.

4 Application

In this section, we show the ability of the provided approach using a
numerical example. We apply the proposed method for evaluating 15
units, which each unit uses four inputs to produce four outputs. The
inputs 1 and 4 are completely known, the input 2 is of the form of ordinal
data and input 3 is of the form of fuzzy data. Also, the outputs 1 and
3 are of the form of interval data, the output 2 is of the form of ordinal
data and output 4 is completely known. The data set for this example
are shown in Table 1. In Table 1, we can see that the data of input 3 are
fuzzy data in general form. The membership functions of general fuzzy
numbers of input 3 in Table 1 are as follows:
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x̃23 =



0, x ≤ 1;

x−1
0.5
, 1 ≤ x ≤ 1.5;

1, 1.5 ≤ x ≤ 2;

e−
(x−2)2

8 , 2 ≤ x.

x̃33 =


x, 0 ≤ x ≤ 1;

e−
(x−1)2

2 , 1 ≤ x;

0, Otherwise.

x̃53 =


1−(x−5)2

4
, x ∈ [3, 7];

0, Otherwise.
x̃73 =


(x− 1)2, x ∈ [1, 2];

(x− 3)2, x ∈ [2, 3];

0, Otherwise.

x̃83 =



(x−1)2

2
, x ∈ [1, 3];

1, x ∈ [3, 4];

(5− x)2, x ∈ [4, 5];

0, Otherwise.

x̃93 =



x2, x ∈ [0, 1];

1, x ∈ [1, 2];

(3− x)2, x ∈ [2, 3];

0, Otherwise.

x̃10,3 =


2

1+(x−3)2
− 1, x ∈ [2, 4];

0, Otherwise.

In order to convert the fuzzy data into interval ones, we use a weighting
function f(α, α) = 3α2 in procedure mentioned in section 2.2.2. Also by
a procedure mentioned in section 2.2.1, we convert the ordinal data into
interval data. Therefore the interval forms of Inputs data of Table 1 are
obtained as Table 2, and the interval forms of Outputs data of Table 1
are obtained as Table 3.

In order to rank these 15 units, we need to calculate LUj j = (1, ..., n),
(see Table 4). From Table 4, it can be seen that only units 3 and 9 are in
E++ and the other units are in E+. For ranking the units in E+ we use
the fact that if DMUj(j = 1, ..., n) has a higher LUj , then it has a better
rank. In Table 4 we set the rank of DMUs 3 and 9 in 1th position, and
the rank of other DMUs are calculated with respect to the values of LUj
(For more details see the third column of Table 4).

So far we’ve done the first step of the proposed algorithm. Now we need
to calculate the ideal points for DMUs in E++. Ideal point of DMUs can
be obtained by formula (2.25)-(2.28). Table 5 shows the input data of
the ideal points for DMUs 3 and 9.

Table 6 shows the output data of the ideal points for DMUs 3 and 9.
For ranking these two units in E++ first we determine their ideal points
and the special DMU.The upper and lower bounds of the data of their
ideal points and the inputs and outputs of the special DMU are shown
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Table 3
The interval form of Output data of the Table 1.

O1L O1L O2L O2U O3L O3U O4L O4U

1 48 53 0.066 0.38 3119 3122 64 64

2 44 50 0.076 0.436 3120 3126 51 51

3 55 56 0.163 0.933 3141 3141 78 78

4 47 52 0.152 0.871 3110 3132 55 55

5 46 50 0.071 0.407 3130 3139 53 53

6 48 51 0.124 0.808 3115 3121 52 52

7 47 53 0.087 0.501 3124 3125 69 69

8 42 51 0.142 0.813 3129 3138 62 62

9 55 56 0.175 1 3140 3141 79 79

10 49 55 0.094 0.537 3120 3139 60 60

11 47 53 0.1 0.575 3127 3138 64 64

12 48 54 0.115 0.661 3124 3137 59 59

13 48 55 0.132 0.758 3119 3134 67 67

14 43 51 0.081 0.468 3121 3136 61 61

15 42 50 0.108 0.616 3128 3135 60 60

in Tables 5-7, respectively. In Table 3, ”L” and ”U” indices indicate the
lower and upper bounds of intervals, respectively. We denote the special
DMU by (x̃, ỹ). Inputs and outputs of special DMU can be obtained by
formula (2.29) as Table 7.

This is complete the step 3. Now for each DMU ∈ E++ we calculate the
value of Γbo and Γbo. This is done by using the formula (2.30) and (2.32)
and are shown in Table 8.

This is complete the step 3. Now for each DMU ∈ E++ we calculate the
value of Γbo and Γbo. This is done by using the formula (30) and (31) and
are shown in Table 8.
Now, for each DMU ∈ E++ we calculate the value of Ψo as fourth
column of Table 8. The ranking order of these DMUs are shown in the
final column of Table 8. We can see that DMU9 is the best DMU because
it has the minimum value of Ψo.
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Table 4
Values of LUo .

DMUs LUo Rank

1 0.9772 11

2 0.9737 13

3 1.0000 1

4 0.9706 14

5 0.9846 6

6 0.9838 7

7 0.9788 10

8 0.9882 4

9 1.0000 1

10 0.9699 15

11 0.9797 9

12 0.9749 12

13 0.9851 5

14 0.9818 8

15 0.9897 3

Table 5
Input data of Ideal Points.

I1L I1U I2L I2U I3L I3U I4L I4U

3 40.424 244.8608 0.010758 0.225114 0.131029 1.724 20.701 125.3924

9 43.4 248 0.01155 0.228 0.140675 1.724 22.225 127

Table 6
Output data of Ideal Points.

O1L O1U O2L O2U O3L O3U O4L O4U

3 55 215.5152 0.175 3.848485 3141 12088.09 79 304.0303

9 55 193.4545 0.175 3.454545 3141 10850.73 79 272.9091

Table 7
Inputs and outputs of special DMU.

special DMU x̃1 x̃2 x̃3 x̃4 ỹ1 ỹ2 ỹ3 ỹ4

(x̃, ỹ) 254 1 10.724 134 42 0.066 3110 51
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Table 8
The final results and ranking.

DMUs Γbo Γgo Ψo Ranking

3 4.60 294.42 299.02 2

9 4.57 246.16 250.73 1

5 Conclusion

Due to its widely used practical background, data envelopment analysis
(DEA) has become a pop area of research, but lack of discrimination
power is a drawback of DEA that has aroused considerable research in-
terest in the DEA literature. Therefore, ranking of DMUs in DEA is an
important phase for efficiency evaluation of DMUs.
In the conventional DEA, all the data assume the form of specific numer-
ical values. However, the observed values of the input and output data
in real-life problems are sometimes imprecise or vague, such as interval
data, ordinal data and fuzzy data. The imprecise or vague data in the
DEA models have been examined in the literature in different ways. For
this purpose, different methods with different properties to achieve full
ranking in the presence of imprecise data have been proposed. Recently,
Jahanshahloo et al. [20] proposed a new method that can rank all DMUs
with interval data completely. Although they proposed a ranking method
by ideal points in the presence of interval data,it is not perfect for rank-
ing DMUs with fuzzy and/or ordinal data. Therefore, a new approach
to ranking DMUs in the presence of fuzzy, ordinal and interval data is
suggested in the current study. The introduced ranking system can sim-
ilarly be performed in the assessment of DMUs with exact data.
In order to convert each fuzzy number into interval data we used the
nearest weighted interval approximation of fuzzy numbers by applying
the weighting function fα,α = 3α2 (see section 2.2.2) and by a method
discussed in section 2.2.1 we converted each ordinal data into interval
one. By this manner we could convert all data into interval data. Then
for ranking DMUs we used the method proposed in [20]. This method
is able to rank all DMUs with any kind of fuzzy and/or ordinal data. It
has been shown that the proposed ranking methodology can successfully
distinguish between all DMUs with fuzzy and/or ordinal data and there-
fore makes a new contribution to DEA ranking. The numerical example
illustrated the process of ranking all the DMUs in the presence of fuzzy,
ordinal and interval data.
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