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Abstract

In this work, we present a computational method for solving second kind
nonlinear Fredholm Volterra integral equations which is based on the use of
Haar wavelets. These functions together with the collocation method are then
utilized to reduce the Fredholm Volterra integral equations to the solution of
algebraic equations. Finally, we also give some numerical examples that shows
validity and applicability of the technique.
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1 Introduction

Beginning from 1991 the wavelet method has been applied for solving
integral equations, a short survey on this papers can be found in [5]. The
solutions are often quite complicated and the advantages of the wavelet
method get lost, therefore any kind of simplifications are welcome. One
possibility for it is to make use of the Haar wavelets. In fact, Haar wavelets
have a number of advantages, including: simplicity, orthogonality and
very compact support. The main benefits of the Haar wavelets method
are sparse representation, fast transformation and possibility of imple-
mentation of fast algorithm in matrix representation. The Haar basis is
simplest instance of spline wavelets, resulting when the polynomial de-
gree is set to zero, so computational costs with Haar wavelets is lesser.
Different kind of basis functions have been used to solve and reduce inte-
gral equations to a system of algebraic equations [1-15]. The aim of this
work is to present a numerical method for approximating the solution of
nonlinear Fredholm Volterra integral equation of the second kind

f(x) = g(x) + λ1

∫ x

0
k1(x, t)[f(t)]mdt+ λ2

∫ 1

0
k2(x, t)[f(t)]ndt, (1.1)

where 0 ≤ x, t ≤ 1, m,n ≥ 1, g(x), k1(x, t) and k2(x, t) are assumed
to be in L2(R) on the interval 0 ≤ x, t < 1. We assume that Eq. (1.1)
has a unique solution f to be determined.
Definition 1. The Haar wavelet is the function defined on the real line
R as:

H(t) =


1, 0 ≤ t < 1

2
,

−1, 1
2
≤ t < 1,

0, elsewhere.

Now for n = 1, 2, . . . , write n = 2j + k with j = 0, 1, . . . and k =

0, 1, . . . , 2j−1 and define hn(t) = 2
j
2H(2jt−k)|[0,1]. Also, define h0(t) = 1

for all t. Here the integer 2j, j = 0, 1, . . . , indicates the level of the wavelet
and k = 0, 1, . . . , 2j−1 is the translation parameter. It can be shown that
the sequence {hn}∞n=0 is a complete orthonormal system in L2[0, 1] and
for f ∈ C[0, 1], the series

∑
n < f, hn > hn converges uniformly to f [17],

where < f, hn >=
∫ 1
0 f(x)hn(x)dx.
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2 Materials and Methods

A function f(x) defined over the interval [0, 1) may be expanded as:

f(x) =
∞∑
n=0

fnhn(x), (2.1)

with fn =< f(x), hn(x) >, that it is an inner product on the unit interval.
In practice, only the first k-term of (2.1) are considered, where k is a
power of 2, that is,

f(x) ' fk(x) =
k−1∑
n=0

fnhn(x), (2.2)

with matrix form:

f(x) ' fk(x) = f th(x),

where, f = [f0, f1, . . . , fk−1]
t and h(x) = [h0(x), h1(x), . . . , hk−1(x)]t. For

a positive integer m, [f(x)]m may be approximated as:

[f(x)]m '
k−1∑
n=0

f̃nhn(x) = f̃ th(x),

where f̃ is a column vector whose elements are nonlinear combinations of
the elements of the vector f . In the next section, we consider evaluation
of f̃ in terms of f .
Similarly, k(x, t) ∈ L2[0, 1)2 may be approximated in the matrix form as

k(x, t) ' ht(x)kh(t),

where, k = [kij]0≤i,j≤k−1 and kij =< hi(x), < k(x, t), hj(t) >>, approxi-
mation of the kernel k(x, t) by wavelets is known as standard represen-
tation. It is a wavelet image of the kernel and is usually a sparse matrix.
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3 Evaluating f̃

For numerical implementation of the proposed method, we need to calcu-
late vector f̃ whose elements are nonlinear combination of the elements
of the vector f . For this purpose, we present the Haar coefficient matrix
H; it is a k × k matrix with the elements

H = [hn(tj)]0≤n≤k−1,1≤j≤k,

where the points tj are the collocation points

tj =
j − 1

2

k
, j = 1, 2, . . . , k.

Also, we define a k-set of Block-Pulse Function (BPF) as:

Bi(t) =

1, i−1
k
≤ t < i

k
, for all i = 1, 2, . . . , k,

0, elsewhere.
(3.1)

The functions Br(t) are disjoint and orthogonal. That is,

Bj(t)Bi(t) =

0, i 6= j,

Bi(t), i = j,
(3.2)

< Bi(t), Bj(t) > =

0, i 6= j,
1
k
, i = j.

(3.3)

It can be shown that h(t) = HB(t) [16], vector h(t) and matrix H
are already introduced and B(t) = [B1(t), . . . , Bk(t)]t. Using the subject
already discussed in section 2,

f(x) = f th(x) and [f(x)]m = f̃ th(x).

So,
f̃ th(x) = [f th(x)]m (3.4)

orthonormality of the sequence {hn} on [0, 1), implies that∫ 1

0
h(x)ht(x)dx = Ik×k,
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where, Ik×k is the identity matrix of order k, so, from (3.4) we have

f̃ t =
∫ 1

0
f̃ th(x)ht(x)dx =

∫ 1

0
[f th(x)]mht(x)dx.

Hence,

f̃ t =
∫ 1

0
[f th(x)]mht(x)dx

=
∫ 1

0
[f th(x)]m−1f th(x)ht(x)dx

=
∫ 1

0
[f tHB(x)]m−1f tHB(x)Bt(x)Htdx. (3.5)

From (3.1) we have
0 ≤ t < 1

k
implies that B1(t) = 1 and Bi(t) = 0 for i = 2, . . . , k.

1
k
≤ t < 2

k
implies that B2(t) = 1 and Bi(t) = 0 for i = 1, . . . , k and

i 6= 2.
...
k−1
k
≤ t < 1 implies that Bk(t) = 1 and Bi(t) = 0 for i = 1, . . . , k − 1.

Also, disjoint property of BPFs leads to

B(t)Bt(t) =



B1(t) O

B2(t)
. . .

O Bk(t)


.
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Now, x ∈ [ i−1
k
, i
k
) implies that B(x) = ei where ei is i-th column of the

identity matrix of order k so

HB(x)Bt(x)Ht =



H0,1 . . . H0,k

H1,1 . . . H1,k

...
. . .

...

Hk−1,1 . . . Hk−1,k


×



0 Ø
. . .

1
. . .

Ø 0



×



H0,1 . . . Hk−1,1

H0,2 . . . Hk−1,2
...

. . .
...

H0,k . . . Hk−1,k



=



H0,iH0,i H0,iH1,i . . . H0,iHk−1,i

H1,iH0,i H1,iH1,i . . . H1,iHk−1,i
...

...
. . .

...

Hk−1,iH0,i Hk−1,iH1,i . . . Hk−1,iHk−1,i


,

hence,

f tHB(x)Bt(x)Ht =

[
H0,i

k−1∑
r=0

frHr,i, H1,i

k−1∑
r=0

frHr,i, ..., Hk−1,i

k−1∑
r=0

frHr,i,

]
.

(3.6)
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Again for x ∈ [ i−1
k
, i
k
) we can write

f tHB(x) = [f0, f1, . . . , fk−1]



H0,1 H0,2 . . . H0,k

H1,1 H1,2 . . . H1,k

...
...

. . .
...

Hk−1,1 Hk−1,2 . . . Hk−1,k





0
...

0

1

0
...

0


=

k−1∑
r=0

frHr,i. (3.7)

Therefore, for evaluating f̃ and by substituting (3.6)-(3.7) into (3.5) we
can proceed as follows

f̃ t =
∫ 1

0
[f tHB(x)]m−1f tHB(x)Bt(x)Htdx

=
k∑

i=1

∫ i
k

i−1
k

(
k−1∑
r=0

frHr,i

)m−1 [
H0,i

k−1∑
r=0

frHr,i, H1,i

k−1∑
r=0

frHr,i, ..., Hk−1,i

k−1∑
r=0

frHr,i,

]
dx

=
1

k

k∑
i=1

(
k−1∑
r=0

frHr,i

)m−1 [
H0,i

k−1∑
r=0

frHr,i, H1,i

k−1∑
r=0

frHr,i, ..., Hk−1,i

k−1∑
r=0

frHr,i,

]
dx

=
1

k

 k∑
i=1

H0,i

(
k−1∑
r=0

frHr,i

)m

, ...,
k∑

i=1

Hk−1,i

(
k−1∑
r=0

frHr,i

)m
 ,

if we apply the definition H = [hn(tj)]0≤n≤k−1,1≤j≤k, we obtain

f̃ =
1

k

 k∑
i=1

h0(ti)

(
k−1∑
r=0

frhr(ti)

)m

, ...,
k∑

i=1

hk−1(ti)

(
k−1∑
r=0

frhr(ti)

)m
t .
(3.8)
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4 Second kind nonlinear Volterra Fredholm integral equation

Now consider the nonlinear Fredholm Volterra integral equation of the
second kind with nonlinear regular part:

f(x) = g(x) + λ1

∫ x

0
k1(x, t)[f(t)]mdt+ λ2

∫ 1

0
k2(x, t)[f(t)]ndt, (4.1)

where 0 ≤ x, t ≤ 1 and m,n ≥ 1 as before, in the matrix form we
have:

f(x) ' ht(x)f , (4.2)

g(x) ' ht(x)g, (4.3)

k1(x, t) ' ht(x)k1h(t), (4.4)

k2(x, t) ' ht(x)k2h(t), (4.5)

[f(x)]m ' ht(x)f̃m, (4.6)

[f(x)]n ' ht(x)f̃n, (4.7)

by substituting the approximations (4.2)-(4.7) into (4.1) we obtain

ht(x)f = ht(x)g + λ1

∫ x

0
ht(x)k1h(t)ht(t)f̃mdt (4.8)

+ λ2

∫ 1

0
ht(x)k2h(t)ht(t)f̃ndt

= ht(x)g + λ1h
t(x)k1

(∫ x

0
h(t)ht(t)dt

)
f̃m (4.9)

+ λ2h
t(x)k2

(∫ 1

0
h(t)ht(t)dt

)
f̃n

= ht(x)g + λ1h
t(x)k1s(x)f̃m + λ2h

t(x)k2f̃
n, (4.10)
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where, s(x) =
∫ x
0 h(t)ht(t)dt. Now for evaluating s(x) at the collocation

points tj we may proceed as follows

B(x)Bt(x) =


B1(x) ∅

. . .

∅ Bk(x)



= B1(x)



1 ∅

0
. . .

∅ 0


+B2(x)



0 ∅

1

0
. . .

∅ 0


+ . . .

+Bk(x)



0 ∅

0
. . .

0

∅ 1


=

k∑
i=1

Bi(x)d(i),

where, d(i) is a k × k matrix with the elements

d(i)
mn =

1, m = n = i,

0, m 6= i or n 6= i,
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therefore we have

h(x)ht(x) = HB(x)Bt(x)Ht

= H(
k∑

i=1

Bi(x)d(i))Ht

=
k∑

i=1

Bi(x)Hd(i)Ht. (4.11)

By integrating (4.9) we obtain:

s(t) =
∫ t

0
h(x)ht(x)dx

=
k∑

i=1

∫ t

0
Bi(x)dxHd(i)Ht

=
k∑

i=1

ni(t)Hd(i)Ht, (4.12)

where, ni(t) =
∫ t
0 Bi(x)dx, t ∈ [0, 1]. Now by using (3.1) and simple cal-

culation we obtain,
n1(t1) =

∫ t1
0 B1(x)dx = 1

2k
and ni(t1) = 0 for i = 2, . . . , k.

n1(t2) =
∫ t2
0 B1(x)dx = 1

k
, n2(t2) =

∫ t2
0 B2(x)dx = 1

2k
and ni(t2) = 0 for

i = 3, . . . , k.
...
n1(tk) =

∫ tk
0 B1(x)dx = 1

k
, . . . , nk−1(tk) =

∫ tk
0 Bk−1(x)dx = 1

k
and nk(tk) =∫ tk

0 Bk(x)dx = 1
2k

.
So by evaluating (4.10) at the collocation points tj we obtain

s(t1) =
1

2k
Hd(1)Ht,

s(t2) =
1

k
Hd(1)Ht +

1

2k
Hd(2)Ht,

...

s(tk) =
1

k
Hd(1)Ht + · · ·+ 1

k
Hd(k−1)Ht +

1

2k
Hd(k)Ht,
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or in abstract form

s(t1) =
1

2k
Hd(1)Ht,

s(tj) =
1

k

j−1∑
i=1

Hd(i)Ht +
1

2k
Hd(j)Ht, for j = 2, . . . , k.

Collocating (4.8) at the points tj, j = 1, 2, ..., k gives

ht(tj)f = ht(tj)g + λ1h
t(tj)k1s(tj)f̃

m + λ2h
t(tj)k2f̃

n, (4.13)

which is a nonlinear system of algebraic equations, and can be solved
for elements f0, f1, ..., fk−1 by Newton’s iterative method and desired ap-
proximation for f(x) can be obtained by fk(x) as

fk(x) =
k−1∑
n=0

fnhn(x).

5 Error Analysis

Theorem 1. If a differentiable function f(x) with bounded first deriva-
tive on (0,1) is represented in a series of Haar wavelets we have ‖fk(x)−
f(x)‖ ≤ M√

3
1
k
, which implies that limk→∞ fk(x) = f(x).

In [1] it is established that if xi ∈ [0, 1), i = 1, . . . , l be l equidistance
points and calculate f ′(xi) for i = 1, 2, . . . , l, then ε + max1≤i≤l |f ′(xi)|
may be considered as an estimation of M . Clearly, the estimation would
become more precise if l increases and ε can be chosen by user(say, ε = 1).
Proof. See [1].

6 Numerical Examples

Now for numerical implementing of presented method, we choose 2 ex-
amples with exact solution for comparing with the approximate solution.
Results have shown in table 1 and table 2 for example 1 and example 2
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respectively for k=8.
Example 1. Consider the following nonlinear Volterra-Fredholm integral
equation

f(x) = ex − 1

2
(e2x − 1) +

∫ x

0
[f(t)]2dt, 0 ≤ x < 1,

with exact solution f(x) = ex.

Table 1: Numerical result for example 1 with k=8

t Exact Approximate for k=8

0.1 1.1051 1.0684

0.2 1.2214 1.2121

0.3 1.3498 1.3758

0.4 1.4918 1.5529

0.5 1.6487 1.7080

0.6 1.8221 1.7780

0.7 2.0137 2.0278

0.8 2.2255 2.2744

0.9 2.4596 2.5322

Example 2. Consider the following nonlinear Volterra-Fredholm integral
equation

f(x) = ex − 1

9
(1 + 2e3)x+

∫ 1

0
xt[f(t)]3dt, 0 ≤ x < 1,

with exact solution f(x) = ex.

Table 2: Numerical result for example 2 with k=8
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t Exact Approximate for k=8

0.1 1.1051 1.0658

0.2 1.2214 1.2091

0.3 1.3498 1.3712

0.4 1.4918 1.5547

0.5 1.6487 1.7225

0.6 1.8221 1.7625

0.7 2.0137 1.9978

0.8 2.2255 2.2641

0.9 2.4596 2.5258

7 Conclusion

In presented work we introduced a method to solve the nonlinear Volterra
Fredholm integral equations. Haar wavelets together with the collocation
method were used to reduce the problem to the solution of nonlinear
algebraic equations. For other orthogonal polynomials such as Legendre
and Chebyshev polynomials the calculation procedures are usually too
tedious, although some recursive formula are available. These polynomi-
als are in no way able to compare with Haar wavelets expansion with
respect to computation time and data storage requirements. So the fast,
local and multiplicative properties of Haar wavelets were used for solving
second kind nonlinear Fredholm Volterra integral equations. Error anal-
ysis states more accurate of the approximated solution may be obtained
by using larger k.
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