تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,346,582 |
تعداد دریافت فایل اصل مقاله | 55,388,104 |
Application of iterative Jacobi method for an anisotropic diusion in image processing | ||
Theory of Approximation and Applications | ||
مقاله 4، دوره 8، شماره 2، اسفند 2014، صفحه 41-48 اصل مقاله (1.23 M) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
M Khanian* 1؛ A. Davari2 | ||
1Department of Mathematics, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran. | ||
2Department of Mathematics, Faculty of sciences, University of Isfahan, Isfahan, Iran. | ||
چکیده | ||
Image restoration has been an active research area. Dierent formulations are eective in high quality recovery. Partial Dierential Equations (PDEs) have become an important tool in image processing and analysis. One of the earliest models based on PDEs is Perona-Malik model that is a kind of anisotropic diusion (ANDI) lter. Anisotropic diusion lter has become a valuable tool in dierent elds of image processing specially denoising. This lter can remove noises without degrading sharp details such as lines and edges. It is running by an iterative numerical method. Therefore, a fundamental feature of anisotropic diusion procedure is the necessity to decide when to stop the iterations. This paper proposes the modied stopping criterion that from the viewpoints of complexity and speed is examined. Experiments show that it has acceptable speed without suering from the problem of computational complexity. | ||
مراجع | ||
[1] P. Perona, J. Malik, Scale space and edge detection using anisotropic diusion, IEEE Trans. Pattern Anal. Mach. Intell.,12,629-639 (1990). [2] I. Capuzzo Dolcetta, R. Ferretti, Optimal stopping time formulation of adaptive image ltering, Appl.Math. Optim. 43, 245-258 (2001). [3] G. Gilboa, N. Sochen, Y.Y. Zeevi, Estimation of optimal PDE-based denoising in the SNR sense, IEEE Trans. Image Proc. 15, 2269-2280 (2006). [4] H. Molhem, R. Pourgholi, M. Borghei, A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization, Mathematics Scientic Journal, Vol. 7, No. 2, 39-54(2012). [5] P. Mrazek, M. Navara, Selection of optimal stopping time for nonlinear diusion ltering, Int. J. Comput. Vision. 52, 189-203 (2003). [6] A. Ilyevsky, E. Turkel, Stopping criteria for anisotropic PDEs in image processing, J. Sci. Compute. 45, 337-347, (2010). [7] Z. Wang, A.C. Bovick, H.R. Sheikh , E.P. Simoncelli, A novel kernel- based framework for facial-image hallucination Structural Similarity, IEEE Transactions on Image Processing. 13, No. 4, pp. 600-612 (2004). | ||
آمار تعداد مشاهده مقاله: 784 تعداد دریافت فایل اصل مقاله: 1,174 |