تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,346,191 |
تعداد دریافت فایل اصل مقاله | 55,387,810 |
CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS | ||
International Journal of Mathematical Modelling & Computations | ||
مقاله 7، دوره 4، 4 (FALL)، فروردین 2014، صفحه 377-387 اصل مقاله (194.13 K) | ||
نویسندگان | ||
Hojatollah Adibi1؛ M. Shamooshaky؛ Pouria Assar2 | ||
1Department of Mathematics, amirkabir University,Iran Department of mathematics, IAU,TCB Iran, Islamic Republic of | ||
2Amirkabir University of Technology | ||
چکیده | ||
In this paper, we present a computational method for solving boundary integral equations with loga- rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. The method is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis. This approach utilizes the non-uniform Gauss-Legendre quadrature rule for approximating logarithm-like singular integrals and so reduces the solution of boundary integral equations to the solution of linear systems of algebraic equations. The properties of CAS wavelets are used to make the wavelet coe±cient matrices sparse, which eventually leads to the sparsity of the coe±cient matrix of the obtained system. Finally, the validity and e±ciency of the new technique are demonstrated through a numerical example. | ||
کلیدواژهها | ||
Boundary integral equation؛ Logarithmic singular kernel؛ Galerkin Method؛ CAS wavelet؛ Laplacian equation؛ sparse matrix | ||
آمار تعداد مشاهده مقاله: 7,679 تعداد دریافت فایل اصل مقاله: 1,183 |