Abbott, L.K., and A.D. Robson. 1985. Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytoogistl. 99: 245-255.
Alloway, B.J. 2008. Zinc in soils and crop nutrition. 2nd ed. IZA and IFA, Brussels, Belgium and Paris, France.
AmirAbadi, M., F. Rejali, M.R. Ardakani, and M. Borji. 2010. Effect of Aztobacter and mycorrhiza on Nutrients uptake by Zea on Different level of Phosphorous. Water and Soil Researches. 23(1): 107-115. (In Persian).
Anderson, E.L., P.D. Millner, and H.M. Kunishi. 2008. Maize root length density and mycorrhizal infection as influenced by tillage and soil phosphorus. Journal of Plant Nutrition. 10: 9-16.
Ardakani, M.R., F. Majd, D. Mazaheri, and Gh. Nourmohammadi. 2000. The efficiency of azospirillum, mycorrhiza, streptomyces with the use of manure in wheat using P-32. IranianJournalof Crop Sciences. 1(1): 100-109. (In Persian).
Ardakani, M.R., G. Pietsch, W. Wanek, P. Schweiger, A. Moghaddam, and J.K. Friedel. 2009. Nitrogen fixation and yield of lucerne (Medicago sativa L.), as affected by co-inoculation with Sinorhizobium meliloti and arbuscular mycorrhiza under dry organic farming conditions. American-Eurasian Journal Agric and Environ. Sciences. 6(2): 173-183.
Bolan, N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil. 134: 189-207.
Borja, I., H.A. De Wit, A. Steffenrem, and H. Majidi. 2008. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiology. 28: 773-784.
Cakmack, I. 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil. 247: 3-24.
Cardoso, I.M., and T.W. Kuyper. 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment. 116: 72-84.
Cohen, A.T., P. Mariella, and P. Patricia. 2007. Effect of azospirillum & azotobacter fertilizer on bean plants. International Plant Growth Substances Association 19th Annual Meeting. Puerto Vallarta, Mexico-July, 21-25.
Evans, D.G., and M.H. Miller. 2006. The role of the external mycelial network in the effect of soil disturbance upon vesicular arbuscular mycorrhizal colonization of maize. New Phytologist. 114(1): 65–71.
Fathi, Gh., and M.R. Enayatgholizade. 2009. The effect of iron, zinc and copper on growth and yield of barley cultivars in Khuzestan conditions. Journal ofCropPhysiology. 1(1): 28-41. (In Persian).
Glick, B.R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Cientifica. 2012: 1-15.
Hamzehpour, N., M.J. Malakouti, and A. Majidi. 2010. Interaction of zinc, iron and manganese in different organs of wheat. Journal of Soil Research. 24 (1): 1-8. (In Persian).
Hezave, H., and M.R. Ardakani. 2012. Feasibility study on barley biofortification to iron and zinc by mycorrhizal symbiosis. Msc thesis from Faculty of Agriculture and Natural Resources, Islamic Azad University, Arak Branch. 126 pp. (In Persian).
Kathleen, K., R. Tresede, and A. Cross. 2006. Global distributions of Arbuscular Mycorrhizal Fungi. Ecosystems. 9: 305-316.
Kazemi poshtmasari, H., H.A. Pirdashti, and A. Bahmanyar. 2007. Effects of phosphate fertilizers and biologic features two varieties of beans. Journal of Agricultural Sciencesand Natural Resources. 14(6): 20-29. (In Persian).
Malakouti, M.J. 2007. Zinc is a neglected element in the life cycle of plants. Middle Eastern and Russian Journal of Plant Science and Biotechnology. 1(1): 1-12.
Manskem, G.B., A. Luttger, R.K. Behl, P.G. Vlekand, and M. Cimmit. 2000. Enhancement of mycorrhiza (VAM) infection, nutrient efficiency and plant growth by Azotobacter chroococcum in wheat. Journal of Plant Breeding.13: 78-83.
Mohammad, M.J., H. Malkawi, and R. Shibli. 2010. Effect of mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of Plant Nutrition. 26(1): 125-137.
Neuman, E., and E. Geouge. 2004. Colonization with the AMF Glomus mosseae (Nicol and Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L.). Journal of Plant and Soil. 261: 245-255.
Oyetunji, O.J., J. IEkanayake, O. Osonubi, and O. Lyasse. 2004. Cassava macro- and micronutrient uptake and partitioning in alley cropping as influenced by Glomus spp. in sub-humid tropics and its impact on productivity. The International Institute of Tropical Agriculture. Available in: http://ciat-library.ciat.cgiar.org/Articulos_Ciat/cbn/Posters-PDF/Oyetunji%20et%20al%20poster%20of%20CBN6.pdf.
Pahlevan Rad, M.R., M. Kikha, and M.R. Naroei Rad. 2008. Effect of zinc, iron and manganese on yield, yield components, concentration and absorption of nutrients in the Wheat’s grain. Research andDevelopmentin Agriculture andHorticulture. 2(79): 142-150. (In Persian).
Pairunan, A.K., A.D. Robson, and L.K. Abbott. 1980. The effectiveness of vesicular arbuscular mycorrhiza in increasing growth and phosphorus uptake of subterranean clover from phosphorus of different solubilities. New Phytologist. 84: 327-338.
Safapour, M., M.R. Ardakani, F. Rejali, Sh. Khaghani, and M. Teymoori. 2012. Effect of co-inoculation with Glomus intraradices and Rhizobium phaseoli on yield and yield components of three red bean (Phaseolus vulgaris L.) genotypes. New Finding in Agriculture. 6(1): 21-35. (In Persian).
Safapour,M., M.R. Ardakani, Sh. Khaghani,and M. Teymoori. 2011.Response of yield and yield components of three red bean (Phaseolus vulgaris L.) genotypes to co-inoculation with Glomus intraradices and Rhizobium phaseoli. American-Eurasian Journal Agriculture and Environment Sciences. 11(3): 398-405.
Salehrastin, N. 1998. Biological fertilizers. Soil and WaterJournal. 12 (3): 1-36. (In Persian).
SAS Institute. 2004. The SAS system for windows. Release 9.1.3. SAS Inst., Cary, NC. USA.
Shahzad,S.M., A. Khalid, M. Arshad,and K. Rehman. 2010. Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil and Environment. 29(1): 38-46.
Stancheva, M., G. Geneva, G. Zehirov, M. Tsvetkova, and G. Hristozkova. 2006. Effects of combined inoculation of pea plants with arbuscular mycorrhizal fungi and rhizobium on nodule formation and nitrogen fixing activity. Genetic, Applied, Plant Physiology. Special Issue, 61-66.
Tarafdar, J.S., and H. Marschner. 1994. Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plant. Soil Science and Plant Nutrition. 40(4): 593-600.
Tennant, D. 1975. A test of a modified line intersects method of estimating root length. Journal Ecology. 63: 995-1001.
Varnord wijk, M., and P. Willigen. 1987. Agricultural concepts of roots: From morphogenetic to functional equilibrum between root and shoot growth. Netherlands Journal of Agricultural Science. 35: 487-496.
Wenke, L. 2009. Correlation between specific fine root length and mycorrhizal colonization of maize in different soil types. Frontiers of Agriculture in China. 3(1): 13-15.
Wilson, A.J., A.W. Robards, and M.J. Goss. 1977. Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.) II. Effects on cell development in seminal roots. Journal of Experimental Botany. 28(5): 1216-1227.
Zramos, A.C., P.T. Lima, P.N. Dias, M.C. Kasuya, and J.A. Feijó. 2009. A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. New Phytologist. 181: 448–462.