Journal of Linear and Topological Algebra Vol. 05, No. 04, 2016, 263-270

On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group G_7

M. Y. Chreif^a, M. N. Abdulrahim^{a*}

^a Department of Mathematics, Beirut Arab University, PO. Box 11-5020, Beirut, Lebanon.

Received 28 July 2016; Revised 1 October 2016; Accepted 25 October 2016.

Abstract. We consider a 2-dimensional representation of the Hecke algebra $\mathcal{H}(G_7, u)$, where G_7 is the complex reflection group and u is the set of indeterminates

$$u = (x_1, x_2, y_1, y_2, y_3, z_1, z_2, z_3).$$

After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the representation of the Hecke algebra $\mathcal{H}(G_7, u)$.

© 2016 IAUCTB. All rights reserved.

Keywords: Braid group, Hecke algebra, irreducible, reflections.

2010 AMS Subject Classification: 20F36.

1. Introduction

Let V be a complex vector space and W a finite irreducible subgroup of GL(V) generated by complex reflections. Let R be the set of reflections in W. For any element s of R, denote by H_s its pointwise fixed hyperplane. We define the set $V^{reg} = V - \bigcup_{s \in R} H_s$ and denote by \bar{V} the quotient V^{reg}/W . The braid group associated to (W, V) is the fundamental group $B(W) = \pi_1(\bar{V}, \bar{x}_0)$ of \bar{V} with respect to any point $\bar{x}_0 \in \bar{V}$. We choose the set of indeterminates, $u = (u_{s,j})_{s,0 \leqslant j \leqslant o(s)-1}$, where s runs over the generators of W and

E-mail address: mna@bau.edu.lb (M. N. Abdulrahim).

^{*}Corresponding author.

 $u_{s,j} = u_{t,j}$ if s and t are conjugate in W. Here o(s) denotes the order of s. The cyclotomic Hecke algebra associated to W is the quotient of the group algebra $\mathbb{Z}[u, u^{-1}]BW$ by the ideal generated by the relations $\prod_{j=0}^{o(s)-1} (s-u_{s,j})$.

In [7], G. Malle and J. Michel constructed on the cyclotomic hecke algebra $\mathcal{H}(G_7, u)$ of the complex reflexion group, G_7 , an irreducible representation

$$\phi: \mathcal{H}(G_7, u) \to M_2(\mathbb{C}(u^{\frac{1}{2}}, u^{-\frac{1}{2}})),$$

where u is the set of indeterminates $u=(x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. In our work, we specialize the indeterminates $x_1,x_2,y_1,y_2,y_3,z_1,z_2$ and z_3 to nonzero complex numbers $\rho e^{i\alpha}$, where $\alpha \in (-\pi,\pi]$ and ρ a positive real number. We then get a representation

$$\varphi: \mathcal{H}(G_7, u) \to GL_2(\mathbb{C}).$$

In section 3, we consider the case when $x_1 = x_2$ and we show that φ is irreducible if and only if $z_1 \neq \frac{y_1 z_2}{y_2}$ and $z_1 \neq \frac{y_2 z_2}{y_1}$ (Theorem 3.4). In section 4, we assume that $x_1 \neq x_2$ and we show that φ is irreducible if and only if $x_1 y_2 z_2 \neq x_2 y_1 z_1$, $x_1 y_1 z_2 \neq x_2 y_2 z_1$, $x_1 y_2 z_1 \neq x_2 y_1 z_2$ and $x_1 y_1 z_1 \neq x_2 y_2 z_2$ (Theorem 4.5).

2. Preliminaries

Definition 2.1 [6] Let V be a complex vector space of dimension n. A complex reflection of GL(V) is a non-trivial element of GL(V) which acts trivially on a hyperplane.

Definition 2.2 [6] Let V be a complex vector space of dimension n. A complex reflection group is the subgroup of GL(V) generated by complex reflections.

Examples of complex reflection groups include dihedral groups and symmetric groups. For $n \ge 3$, the dihedral group, D_n , is the group of the isometries of the plane preserving a regular polygon, with the operation being composition.

A classification of all irreducible reflection groups shows that there are 34 primitive irreducible reflection groups [8]. The starting point was with A. Cohen, who provided a data for those irreducible complex reflection groups of rank 2 [5].

Definition 2.3 [3] The complex reflection group, G_7 , is an abstract group defined by the presentation

$$G_7 = \langle t, u, s \mid t^2 = u^3 = s^3 = 1, tus = ust = stu \rangle$$
.

Theorem 2.4 [1] The braid group of G_7 is isomorphic to the group

$$B = \langle s_1, s_2, s_3 \mid s_1 s_2 s_3 = s_2 s_3 s_1 = s_3 s_1 s_2 \rangle$$
.

Definitions and properties of braid groups are found in [2].

Definition 2.5 [7] Let u be the set of indeterminates $u = (x_1, x_2, y_1, y_2, y_3, z_1, z_2, z_3)$. The cyclotomic Hecke algebra $\mathcal{H}(G_7, u)$ of G_7 is the quotient of the group algebra of B over $\mathbb{Z}[u, u^{-1}]$ by the relations

$$(s_1 - x_1)(s_1 - x_2) = 0,$$
 $\prod_{i=1}^3 (s_2 - y_i) = 0,$ $\prod_{i=1}^3 (s_3 - z_i) = 0.$

For more details about the Hecke algebra of G_7 , see [4].

Definition 2.6 [7] Let $u = (x_1, x_2, y_1, y_2, y_3, z_1, z_2, z_3)$. The representation ϕ is defined as follows:

$$\phi: \mathcal{H}(G_7, u) \to M_2(\mathbb{C}(u^{\pm \frac{1}{2}}))$$

$$s_1 = \begin{pmatrix} x_1 & \frac{y_1 + y_2}{y_1 y_2} & -\frac{(z_1 + z_2)x_2}{r} \\ 0 & x_2 \end{pmatrix}, \quad s_2 = \begin{pmatrix} y_1 + y_2 & \frac{1}{x_1} \\ -y_1 y_2 x_1 & 0 \end{pmatrix} \quad \text{and} \quad s_3 = \begin{pmatrix} 0 & \frac{-r}{y_1 y_2 x_1 x_2} \\ r & z_1 + z_2 \end{pmatrix},$$

where $r = \sqrt{x_1 x_2 y_1 y_2 z_1 z_2}$.

We specialize the indeterminates $x_1, x_2, y_1, y_2, z_1, z_2$ and z_3 to nonzero complex numbers, $\rho e^{i\alpha}$, where $\alpha \in (-\pi, \pi]$ and ρ a positive real number. We then get a representation $\varphi : \mathcal{H}(G_7, u) \to GL_2(\mathbb{C})$.

Definition 2.7 Principal square root function is defined as follows:

$$z \in \mathbb{C}, \ z = (\rho, \alpha), \ \rho \geqslant 0 \ \text{and} \ \sqrt{z} = \sqrt{\rho} e^{i\frac{\alpha}{2}} \ \text{where} \ -\pi < \alpha \leqslant \pi.$$

Since $\alpha \in (-\pi, \pi]$, it follows that $\sqrt{z^2} = z$ for any complex number z.

3. Irreducibility of the representation φ for $x_1 = x_2$

We assume that $x_1 = x_2$ and we find a necessary and sufficient condition that guarantees the irreducibility of the representation $\varphi : \mathcal{H}(G_7, u) \to GL_2(\mathbb{C})$. Under this assumption, we have that the images of the generators of $\mathcal{H}(G_7, u)$ are

$$s_1 = \begin{pmatrix} x_2 & \frac{y_1 + y_2}{y_1 y_2} & -\frac{(z_1 + z_2)x_2}{\sqrt{x_2^2 y_1 y_2 z_1 z_2}} \\ 0 & x_2 \end{pmatrix}, \quad s_2 = \begin{pmatrix} y_1 + y_2 & \frac{1}{x_2} \\ -y_1 y_2 x_2 & 0 \end{pmatrix}$$

and

$$s_3 = \begin{pmatrix} 0 - \frac{\sqrt{x_2^2 y_1 y_2 z_1 z_2}}{x_2^2 y_1 y_2} \\ r & z_1 + z_2 \end{pmatrix}.$$

For the matrix s_1 , we denote by $s_1(i,j)$ the term of the matrix s_1 which lies in the *i*th row and in the *j*th column.

Lemma 3.1 $s_1(1,2) = 0$ if and only if $z_1 = \frac{y_1 z_2}{y_2}$ or $z_1 = \frac{y_2 z_2}{y_1}$.

Proof. We show that if $s_1(1,2) = 0$ then $z_1 = \frac{y_1 z_2}{y_2}$ or $z_1 = \frac{y_2 z_2}{y_1}$. Assume that $s_1(1,2) = 0$. This implies that $\frac{y_1 + y_2}{y_1 y_2} = \frac{(z_1 + z_2) x_2}{x_2 \sqrt{y_1 y_2 z_1 z_2}}$. This implies that $(y_1 + y_2) \sqrt{y_1 y_2 z_1 z_2} = (z_1 + z_2) y_1 y_2$. Using $y_1 y_2 = (\sqrt{y_1 y_2})^2$, we get $(y_1 + y_2) \sqrt{z_1 z_2} = (z_1 + z_2) \sqrt{y_1 y_2}$. Squaring both sides, we obtain $(y_1 + y_2)^2 z_1 z_2 = (z_1 + z_2)^2 y_1 y_2$. This implies that $z_1 = \frac{y_1 z_2}{y_2}$ or $z_1 = \frac{y_2 z_2}{y_1}$. On the other hand, direct computations show that if $z_1 = \frac{y_1 z_2}{y_2}$ or $z_1 = \frac{y_2 z_2}{y_1}$ then $s_1(1,2) = 0$.

We now determine a sufficient condition for irreduciblity.

Proposition 3.2 The representation φ is irreducible if $z_1 \neq \frac{y_1 z_2}{y_2}$ and $z_1 \neq \frac{y_2 z_2}{y_1}$.

Proof. Using the hypothesis and Lemma 3.1, we get $s_1(1,2) \neq 0$. Let S be a non trivial proper invariant subspace of \mathbb{C}^2 . The eigenspace of s_1 is generated by e_1 . This implies that S is of the form $\langle v \rangle$, where $v = ae_1$ for some non-zero complex number a. S is invariant implies that $s_2v = (a(y_1 + y_2), -ax_2y_1y_2) \in S$, which is a contradiction. Therefore S is irreducible.

We determine a necessary condition for irreducibility.

Proposition 3.3 The representation φ is reducible if $z_1 = \frac{y_1 z_2}{u_2}$ or $z_1 = \frac{y_2 z_2}{u_2}$.

Proof. In each case, we show that the 1-dimensional subspace M generated by the vector $u = (-\frac{1}{x_2y_2}, 1)$ is invariant. **Case1.** $z_1 = \frac{y_1z_2}{y_2}$. Substituting in Definition 2.6, we get

$$s_1 = \begin{pmatrix} x_2 & 0 \\ 0 & x_2 \end{pmatrix}, \quad s_2 = \begin{pmatrix} y_1 + y_2 & \frac{1}{x_2} \\ -x_2 y_1 y_2 & 0 \end{pmatrix} \quad \text{and} \quad s_3 = \begin{pmatrix} 0 & -\frac{z_2}{x_2 y_2} \\ x_2 y_1 z_2 & z_2 + \frac{y_1 z_2}{y_2} \end{pmatrix}.$$

It is easy to see that $s_2u = y_1u$ and $s_3u = z_2u$. This implies that M is invariant. Case2. $z_1 = \frac{y_2 z_2}{y_1}$. Substituting in Definition 2.6, we get

$$s_1 = \begin{pmatrix} x_2 & 0 \\ 0 & x_2 \end{pmatrix}, \quad s_2 = \begin{pmatrix} y_1 + y_2 & \frac{1}{x_2} \\ -x_2 y_1 y_2 & 0 \end{pmatrix} \quad \text{ and } \quad s_3 = \begin{pmatrix} 0 & -\frac{z_2}{x_2 y_1} \\ x_2 y_2 z_2 & z_2 + \frac{y_2 z_2}{y_1} \end{pmatrix}.$$

It is also easy to see that $s_2u = y_1u$ and $s_3u = z_2\frac{y_2}{u_1}u$. This implies that M is invariant.

Here we have proved the following theorem:

Theorem 3.4 The representation φ is irreducible if and only if $z_1 \neq \frac{y_1 z_2}{y_2}$ and $z_1 \neq \frac{y_2 z_2}{y_1}$.

Irreducibility of the representation φ for $x_1 \neq x_2$

We assume that $x_1 \neq x_2$ and we find a necessary and sufficient condition that guarantees the irreducibility of the representation $\varphi \colon \mathcal{H}(G_7, u) \to GL_2(\mathbb{C})$. For simplicity, we denote by w the term

$$(x_1 - x_2)^2 y_1^2 y_2^2 z_1 z_2 + [(y_1 + y_2)r - x_1 y_1 y_2 (z_1 + z_2)][(y_1 + y_2)r - x_2 y_1 y_2 (z_1 + z_2)]$$
 (1)

Lemma 4.1 The complex number w, defined in (1), is different from zero if and only if $x_1y_2z_2 \neq x_2y_1z_1$, $x_1y_1z_2 \neq x_2y_2z_1$, $x_1y_2z_1 \neq x_2y_1z_2$ and $x_1y_1z_1 \neq x_2y_2z_2$.

Proof. Simple calculations show that $w = \alpha \beta$, where

$$\alpha = x_2 y_1 y_2 z_1 + x_1 y_1 y_2 z_2 - (y_1 + y_2) r$$

$$\beta = x_1 y_1 y_2 z_1 + x_2 y_1 y_2 z_2 - (y_1 + y_2) r.$$

Assume that w=0. This implies that $\alpha=0$ or $\beta=0$. If $\alpha=0$, then

$$x_2y_1y_2z_1 + x_1y_1y_2z_2 = (y_1 + y_2)r.$$

Squaring both sides, we get

$$y_1y_2(-x_2y_2z_1 + x_1y_1z_2)(-x_2y_1z_1 + x_1y_2z_2) = 0.$$

This implies that $x_1y_1z_2 = x_2y_2z_1$ or $x_1y_2z_2 = x_2y_1z_1$. If $\beta = 0$, then

$$x_1y_1y_2z_1 + x_2y_1y_2z_2 = (y_1 + y_2)r.$$

Squaring both sides, we get

$$y_1y_2(x_1y_2z_1 - x_2y_1z_2)(x_1y_1z_1 - x_2y_2z_2) = 0.$$

This implies that $x_1y_2z_1 = x_2y_1z_2$ or $x_1y_1z_1 = x_2y_2z_2$. On the other hand, we assume that any of the following conditions holds true.

$$x_1y_2z_2 = x_2y_1z_1$$
, $x_1y_1z_2 = x_2y_2z_1$, $x_1y_2z_1 = x_2y_1z_2$ or $x_1y_1z_1 = x_2y_2z_2$

Under direct computations, we easily verify that w=0.

We now give a sufficient condition for the irreducibility of the representation φ .

Proposition 4.2 The representation ϕ is irreducible if $x_1y_2z_2 \neq x_2y_1z_1$, $x_1y_1z_2 \neq x_2y_2z_1$, $x_1y_2z_1 \neq x_2y_1z_2$ and $x_1y_1z_1 \neq x_2y_2z_2$.

Proof. If the term $s_1(1,2)=\frac{y_1+y_2}{y_1y_2}-\frac{x_2(z_1+z_2)}{r}$ equals zero, then neither e_1 nor e_2 is a common eigenvector for s_2 and s_3 . This implies that the representation is irreducible. We note that under this case, we have that the complex number w is not zero and hence, by Lemma 4.1, we also have that $x_1y_2z_2\neq x_2y_1z_1, x_1y_1z_2\neq x_2y_2z_1, x_1y_2z_1\neq x_2y_1z_2$ and $x_1y_1z_1\neq x_2y_2z_2$. If $s_1(1,2)=\frac{y_1+y_2}{y_1y_2}-\frac{x_2(z_1+z_2)}{r}$ is not zero, we diagonalize the matrix S_1 by the invertible matrix

$$T = \begin{pmatrix} 1 & \frac{y_1 + y_2 - x_2(z_1 + z_2)}{y_1 y_2 - r} \\ 1 & \frac{x_2 - x_1}{x_2 - x_1} \\ 0 & 1 \end{pmatrix}.$$

We get

$$T^{-1}s_1T = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix}.$$

We then conjugate s_2 by the matrix T. We get

$$T^{-1}s_2T = \begin{pmatrix} M & w \\ -x_1y_1y_2 & P \end{pmatrix},$$

where

$$M = -\frac{x_2(-x_1y_1y_2z_1 - x_1y_1y_2z_2 + y_1r + y_2r)}{(x_1 - x_2)r},$$

$$P = -\frac{x_1(-x_2y_1y_2z_1 - x_2y_1y_2z_2 - y_1r - y_2r)}{(x_1 - x_2)r}.$$

By conjugating s_3 by T, we get

$$T^{-1}s_3T = \begin{pmatrix} A & B \\ r & C \end{pmatrix},$$

where

$$A = \frac{(y_1 + y_2)r - x_2y_1y_2(z_1 + z_2)}{(x_1 - x_2)y_1y_2}$$

and

$$B = \frac{1}{(x_1 - x_2)^2 r^3} x_1 x_2 z_1 z_2 \left(-x_1 x_2 y_1 y_2 z_1^2 - x_1 x_2 y_1^2 z_1 z_2 - x_1^2 y_1 y_2 z_1 z_2 \right.$$

$$- 2 x_1 x_2 y_1 y_2 z_1 z_2 - x_2^2 y_1 y_2 z_1 z_2 - x_1 x_2 y_2^2 z_1 z_2$$

$$- x_1 x_2 y_1 y_2 z_2^2 + x_1 y_1 z_1 r + x_2 y_1 z_1 r$$

$$+ x_1 y_2 z_1 r + x_2 y_2 z_1 r + x_1 y_1 z_2 r + x_2 y_1 z_2 r$$

$$+ x_1 y_2 z_2 r + x_2 y_2 z_2 r \right)$$

and

$$C = \frac{-r(y_1 + y_2) + x_1 y_1 y_2 (z_1 + z_2)}{(x_1 - x_2) y_1 y_2}.$$

For simplicity, we denote $T^{-1}s_iT$ by b_i for $1 \le i \le 3$. Suppose, to get contradiction, that the representation is reducible. That is, there exists a non trivial proper invariant subspace M of \mathbb{C}^2 of dimension 1. The subspace M has to be one of the following subspaces $< e_1 >$ or $< e_2 >$.

Case1 $S = \langle e_1 \rangle$. Since $e_1 \in M$, it follows that $b_3e_1 = (A, r) \in M$. This implies that r = 0, a contradiction.

Case2 $S = \langle e_2 \rangle$. Since $e_2 \in M$, it follows that $b_2e_2 = (w, P) \in M$. By Lemma 4.1, we have that w is different from zero, which is a contradiction. Therefore the representation is irreducible.

We now present a lemma concerning the number B used in defining $T^{-1}s_3T$ in Proposition 4.2.

Lemma 4.3 The complex number B equals zero in each of the following cases:

- $(1) \ x_1 y_2 z_2 = x_2 y_1 z_1$
- $(2) x_1y_1z_2 = x_2y_2z_1$
- $(3) x_1 y_2 z_1 = x_2 y_1 z_2$
- $(4) x_1y_1z_1 = x_2y_2z_2$

Proof. We verify that B=0 in case (1). Suppose that $x_1y_2z_2=x_2y_1z_1$ then

$$\begin{split} B &= \frac{1}{(x_1 - x_2)^2 r^3} x_1 x_2 z_1 z_2 \Big(-\frac{x_2 y_1 z_1}{y_2 z_2} x_2 y_1 y_2 z_1^2 - \frac{x_2 y_1 z_1}{y_2 z_2} x_2 y_1^2 z_1 z_2 - \frac{x_2^2 y_1^2 z_1^2}{y_2^2 z_2^2} y_1 y_2 z_1 z_2 \\ &- 2 \frac{x_2 y_1 z_1}{y_2 z_2} x_2 y_1 y_2 z_1 z_2 - x_2^2 y_1 y_2 z_1 z_2 - \frac{x_2 y_1 z_1}{y_2 z_2} x_2 y_2^2 z_1 z_2 \\ &- \frac{x_2 y_1 z_1}{y_2 z_2} x_2 y_1 y_2 z_2^2 + \frac{x_2 y_1 z_1}{y_2 z_2} y_1 z_1 x_2 y_1 z_1 + x_2 y_1 z_1 x_2 y_1 z_1 \\ &+ \frac{x_2 y_1 z_1}{y_2 z_2} y_2 z_1 x_2 y_1 z_1 + x_2 y_2 z_1 x_2 y_1 z_1 + \frac{x_2 y_1 z_1}{y_2 z_2} y_1 z_2 x_2 y_1 z_1 \\ &+ x_2 y_1 z_2 x_2 y_1 z_1 + \frac{x_2 y_1 z_1}{y_2 z_2} y_2 z_2 x_2 y_1 z_1 + x_2 y_2 z_2 x_2 y_1 z_1 \Big) \\ &= \frac{1}{(x_1 - x_2)^2 r^3} x_1 x_2 z_1 z_2 \Big(-\frac{x_2^2 y_1^2 z_1^3}{z_2} - \frac{x_2^2 y_1^3 z_1^2}{y_2} - \frac{x_2^2 y_1^3 z_1^3}{y_2 z_2} \\ &- 2 x_2^2 y_1^2 z_1^2 - x_2^2 y_1 y_2 z_1 z_2 - x_2^2 y_1 y_2 z_1^2 - x_2^2 y_1^2 z_1 z_2 + \frac{x_2^2 y_1^3 z_1^3}{y_2 z_2} \\ &+ x_2^2 y_1^2 z_1^2 + \frac{x_2^2 y_1^2 z_1^3}{z_2} + x_2^2 y_1 y_2 z_1^2 + \frac{x_2^2 y_1^3 z_1^2}{y_2} + x_2^2 y_1^2 z_1 z_2 \\ &+ x_2^2 y_1^2 z_1^2 + x_2^2 y_1 y_2 z_1 z_2 \Big) = 0. \end{split}$$

Likewise, we show that B=0 under each of the other conditions.

We now present a necessary condition for irreducibility.

Proposition 4.4 The representation is reducible in each of the following cases:

- $(1) \ x_1 y_2 z_2 = x_2 y_1 z_1$
- $(2) x_1y_1z_2 = x_2y_2z_1$
- $(3) \ x_1 y_2 z_1 = x_2 y_1 z_2$
- $(4) x_1y_1z_1 = x_2y_2z_2$

Proof. Assume that we have either one of the following conditions holds true:

$$x_1y_2z_2 = x_2y_1z_1$$
, $x_1y_1z_2 = x_2y_2z_1$, $x_1y_2z_1 = x_2y_1z_2$ or $x_1y_1z_1 = x_2y_2z_2$.

Let S be the one dimensional subspace generated by e_2 . If

$$s_1(1,2) = \frac{y_1 + y_2}{y_1 y_2} - \frac{x_2(z_1 + z_2)}{r} = 0,$$

then w, as defined in section 4, equals $(x_1 - x_2)^2 y_1^2 y_2^2 z_1 z_2$. This implies that $w \neq 0$. By Lemma 4.1, we get a contradiction. Therefore, without loss of generality, we assume that $s_1(1,2) \neq 0$. We then conjugate the representation by the invertible matrix T. Recall that $b_i = T^{-1}s_iT$ (i = 1, 2, 3). We then have that $b_2e_2 = (w, P) = (0, P)$ by Lemma 4.1, and $b_3e_2 = (B, C) = (0, C)$ by Lemma 4.3. It follows that S is invariant under this representation.

This leads us to state a necessary and sufficient condition for the irreducibility of the representation.

Theorem 4.5 The representation is irreducible if and only if $x_1y_2z_2 \neq x_2y_1z_1$, $x_1y_1z_2 \neq x_2y_2z_1$, $x_1y_2z_1 \neq x_2y_1z_2$ and $x_1y_1z_1 \neq x_2y_2z_2$.

References

- D. Bessis, J. Michel, Explicit presentations for exceptional braid groups. Experiment. Math. 13 (3) (2004), 257-266.
- [2] J. Birman, Braids, Links and Mapping Class Groups. Annals of Mathematical Studies, Princeton University Press, 82 (1975).
- [3] M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras. J. reine angew. Math. 500 (1998), 127-190.
- [4] M. Chlouveraki, Degree and Valuation of the Schur elements of cyclotomic Hecke algebras J. Algebra, 320 (11) (2008), 3935-3949.
- [5] A. Cohen, Finite complex reflection groups. Ann. Sci. École Norm. Sup. (4), 9 (3) (1976), 379-436.
- [6] I. Gordon, S. Griffeth, Catalan numbers for complex reflection groups. Amer. J. Math., 134 (6) (2012), 1491-1502.
- [7] G. Malle, J. Michel, Constructing representations of Hecke algebras for complex reflection groups. LMS J. Comput. Math., 13 (2010), 426-450.
- [8] G. Shephard, J. Todd, Finite unitary reflection groups. Canadian J. Math. 6 (1954), 274-304.