تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,618 |
تعداد مشاهده مقاله | 78,303,424 |
تعداد دریافت فایل اصل مقاله | 55,358,396 |
Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification | ||
International Journal of Smart Electrical Engineering | ||
مقاله 1، دوره 05، شماره 01، اردیبهشت 2016، صفحه 1-4 اصل مقاله (292.97 K) | ||
نوع مقاله: Research Paper | ||
نویسنده | ||
Alireza Rezaee* | ||
Assistant Professor of Department of system and Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, | ||
چکیده | ||
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction using genetic algorithm as a wide search method and we choose 6 best frequency band powers of EEG, in order to speed up processing and meanwhile avoid classifier over fitting. As a result a vector of power spectrum of EEG frequency bands (alpha, beta, gamma, delta & theta) was found that reduces the dimension while giving almost the same correct classification rate. | ||
کلیدواژهها | ||
Brain-Computer interface (BCI)؛ Electroencephalogram (EEG)؛ Feature reduction؛ Genetic Algorithm (GA)؛ Mental task؛ Linear discriminant analysis (LDA) | ||
آمار تعداد مشاهده مقاله: 888 تعداد دریافت فایل اصل مقاله: 922 |