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 ABSTRACT 

 In this article, surface stress and nonlocal effects on the biaxial and uniaxial 

buckling of rectangular silver nanoplates embedded in elastic media are 

investigated using finite difference method (FDM). The uniform temperature 

change is utilized to study thermal effect. The surface energy effects are taken 

into account using the Gurtin-Murdoch’s theory. Using the principle of virtual 

work, the governing equations considering small scale for both nanoplate bulk 

and surface are derived. The influence of important parameters including, the 

Winkler and shear elastic moduli, boundary conditions, in-plane biaxial and 

uniaxial loads, and width-to-length aspect ratio, on the surface stress effects are 

also studied. The finite difference method, uniaxial buckling, nonlocal effect for 

both nanoplate bulk and surface, silver material properties, and below-mentioned 

results are the novelty of this investigation. Results show that the effects of 

surface elastic modulus on the uniaxial buckling are more noticeable than that of 

biaxial buckling, but the influences of surface residual stress on the biaxial 

buckling are more pronounced than that of uniaxial buckling.  

                                       © 2016 IAU, Arak Branch.All rights reserved. 
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1    INTRODUCTION 

 ODAY, nano science and nanotechnology are a field of research that is rapidly progressing and being 

inclusive. Nano scale structures such as nanoplates, nanobeams and nanotubes are cells of nano structures. Thus, 

many fields of science and engineering are working in nanotechnology. Recently, there is extremely interest to 

expanding micro/nanomechanical and micro/nanoelectromechanical systems (MEMS/NEMS), such as sensors, 

switches, actuators, and so on. These devices can be contributed to novel technological developments in many fields 

industry [1]. So far, three main methods have been presented for studying mechanical behaviors of nanostructures. 

These include atomistic [2,3], semi-continuum [4], and classical continuum models [5,6]. However, both the 

atomistic and semi-continuum hypothesizes are computationally expensive and are not suitable for investigating 

macroscale systems. Thus, the continuum mechanics are immensely preferred due to their simplicity. The important 
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feature of nano structures  is their high surface-to-volume ratio, which makes elastic response of their surface layers 

to be different from macroscale structures. Therefore, Gurtin and Murdoch [7,8] expanded a theory based on 

continuum mechanics that included the effects of surface layers. In this situation the surfaces were modeled as a 

mathematical layers with zero thickness that they had own properties. These properties affect on physical, 

mechanical, and electrical properties as well as mechanical response of the nanostructure. For example, Assadi et al. 

[9] and Assadi [10] studied free and forced vibration of nanoplates considering surface stress effects. Moreover, 

Assadi and Farshi [11,12] investigated surface stress effects on the vibration and buckling of circular nanoplate. 

They reported that surface energy effects had important effects on the nanostructures. In addition, increasing in the 

thickness of nanoplate cause decreasing of the surface energy effects. Gheshlaghi and Hasheminejad [13] and 

Nazemnezhad et al. [14] analyzed surface stress effects on nonlinear free vibration of nanobeams. They showed that 

the effect of the surface density on the variation of the natural frequency of the nanobeam versus the thickness ratio 

could decreases consistently with the increase of the mode number. Hashemi and Nazemnezhad [15], and Sharabiani 

and Haeri Yazdi [16] investigated nonlinear free vibrations of functionally graded nanobeams with surface energy 

effects. They demonstrated that by increasing in functionally graded nanobeam dimensions, the surface stress effects 

on nonlinear natural frequency would decrease. Ansari and Sahmani [17] analyzed bending and buckling behavior 

of nanobeams by including surface stress effects and normal stresses, utilising different beam theories. They 

indicated that the distinguishing between the behaviors of nanobeams predicted by with and without surface stress 

effects were dependent on the magnitudes of the surface elastic constants. In these works [9-17], because of using 

Navier’s method, the above-mentioned researchers were not able to study other boundary conditions.  

Karimi et al. [18] investigated  free vibration analysis of rectangular nanoplates including surface energy effects 

using finite difference method (FDM). They reported that the effects of surface properties were amenable to  

diminish in thicker nanoplates, and vice versa. Challamel and Elishakoff [19] studied the buckling of nanobeams, 

incorporating the surface stress into the Euler–Bernoulli and Timoshenko theories. They explained that the surface 

effects may soften a nanostructure for some specific boundary condition. Park [20] studied surface stress effects on 

the critical buckling strains of silicon nanowires. He indicated that accounting for axial strain relaxation due to 

surface stresses may be necessary to improve the accuracy and predictive capability of analytic linear surface elastic 

theories. Recently, Ansari et al. [21] studied surface energies on the buckling, and maximum deflection of 

nanoplates utilizing first order shear deformation theory and generalized differential quadrature method (GDQM). 

Moreover, they [22] investigated forced vibration of  nanobeams based on the surface stress elasticity and 

Timoshenko beam theories using GDQM.They indicated that the significance of surface elasticity effects on the 

response of nanoplate were dependent on its size, type of edge supports, and the selected surface constants. In 

addition, Mouloodi et al. [23,24] analyzed the surface energy effects on the bending and vibration of multi layered 

nanoplate. In addition, Wang and Wang [25] investigated the surface stress effects on the bending and vibration of 

Mindlin nanoplates. In these works [23-25], the finite element model was used to solve governing equations via 

classical beam and plate theories. They showed that the deflections and frequencies of nanoplates had a dramatic 

dependence on the surface stress effects. In these works [9-25], the effect of nonlocal parameter was not considered. 

Due to the presto expansion of technology, especially in micro- and nano-scale fields, one must consider small scale 

effects to obtain solutions with acceptable precision. Neglecting these effects in some cases may result in completely 

incorrect methods, and consequently wrong designs. Therefore, in nanoscale, the small scale effects cannot be 

neglected. For this reason, some researchers investigated the surface influences on the buckling and vibration, 

including small scale effect. For example, Wang and Wang [26, 27] analyzed buckling and vibration of nanoplates 

combining both surface layer model and nonlocal elasticity using Navier’s method. They showed that by raising the 

value of nonlocal parameter, the surface elasticity effects could decrease. Farajpour et al. [28,29] investigated the 

surface energy and nonlocal effects on the buckling and vibration of circular graphene sheets using DQM. They 

studied only clamped boundary condition. It was shown that the size effects would decrease with an augmenting in 

the degree of surface residual tensions. In these works [26-29], the small scale effects were only considered for the 

bulk of nanoplates.  

Juntarasaid et al. [30] analyzed the bending and buckling of nanowires, including the effects of surface stress and 

nonlocal elasticity. They showed that nanowires including both effects appear in-between; i.e., one of nanowires 

with surface stress and the one with nonlocal elasticity. Mahmoud et al. [31, 32] analyzed the bending and vibration 

of nanobeams, including surface and nonlocal effects. They reported that the nonlocal effect on the deflection was 

significant, practically for a smaller thickness. Moreover, by increasing the nonlocal parameter the deflection of 

nanobeams would increase. Recently, Karimi et al. [33] Combined surface energy effects and nonlocal refined plate 

theories on the buckling and vibration of rectangular nanoplates utilising DQM. They showed that the nonlocal 

effects on the shear buckling and vibration are more remarkable than that of biaxial buckling and vibration. Hosseini 

Hashemi et al. [34] studied the vibration of nanobeams, incorporating the surface stress into the Euler–Bernoulli and 
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Timoshenko theories. They reported that considering rotary inertia and shear deformation had more effect on the 

surface effects than the nonlocal parameter. In these works [30-34], the effects of small scale were considered for 

both nanoplate bulk and surface.  

In recent years, Ghorbanpour Arani et al. [35] analyzed nonlocal surface piezoelasticity theory for dynamic 

stability of double-walled boron nitride nanotube conveying viscose fluid based on different theories. Moreover, 

they [36] investigated nonlinear surface energy and nonlocal piezoelasticity theories for vibration of embedded 

single-layer boron nitride sheet using harmonic differential quadrature and differential cubature methods. They [35-

36] indicated that neglecting the surface stress effects, the difference between dynamic instability regions of three 

theories becomes remarkable.  

Recently, Mohammadi et al. [37-39] and Asemi et al. [40] investigated uniform temperature influences effects on 

the vibration and buckling of rectangular, circular and annular graphene sheets based on nonlocal hypothesis 
 without considering surface stress effects. They represented that the effect of temperature change on the vibration 

becomes the opposite at higher temperature case in compression with the lower temperature case. 

In recent years, Ghorbanpour Arani et al. [41] studied 2d-magnetic field and biaxiall in-plane pre-load effects on 

the vibration of double bonded orthotropic graphene sheets using DQM. In addition, Ghorbanpour Arani and Amir 

[42] investigated nonlocal vibration of embedded coupled CNTs conveying fluid under thermo-magnetic fields via 

Ritz method. They reported that results of this investigation could be applied for optimum design of nano/micro 

mechanical devices for controlling stability of coupled systems conveying fluid under thermo-magnetic fields. 

Recently, Ghorbanpour Arani et al. [43] analyzed nonlocal DQM for large amplitude vibration of annular boron 

nitride sheets on nonlinear elastic medium. They showed that with increasing nonlocal parameter, the frequency of 

the coupled system becomes lower. Moreover, Anjomshoa et al. [44] studied frequency analysis of embedded 

orthotropic circular and elliptical micro/nano-plates using finite element method (FDM) considering nonlocal 

elasticity. They indicated that the natural frequencies depend on the non-locality of the micro/nano-plate, especially 

at small dimensions. Naderi and Saidi [45] analyzed nonlocal postbuckling analysis of graphene sheets in a 

nonlinear polymer medium. In addition, they [46] investigated modified nonlocal Mindlin plate theory for buckling 

analysis of nanoplates. They reported that variation of buckling load versus the mode number was physically 

acceptable. In these works [41-46], the effects of surface energy were not considered.  

The main objective of this article is to numerically investigate buckling of rectangular silver nanoplates. In the 

present work, surface energy and nonlocal effects on the biaxial and uniaxial buckling of rectangular silver 

nanoplates embedded in elastic media are studied using FDM. Small-scale and surface elasticity effects are 

introduced using the Eringen’s nonlocal elasticity and Gurtin-Murdoch’s theory, respectively. The governing 

equations are derived from the principle of virtual displacements. Using this principle, the nonlocal governing 

equations for both nanoplate bulk and surface are derived. FDM is used to solve the governing equations for simply-

supported and clamped boundary conditions together with their various combinations. To validate the accuracy of 

the FDM solutions, the governing equations are also solved by the Navier’s method. The influence of important 

parameters including, the Winkler and shear elastic moduli, boundary conditions, in-plane biaxial and uniaxial 

loads, and width-to-length aspect ratio, on the surface stress effects are also studied and discussed. 

2    NONLOCAL PLATE MODEL WITH SURFACE ENERGY AND THERMAL EFFECTS  

By using nonlocal elasticity theory [47] and disregarding body forces, the stress equilibrium equation for a linear 

homogeneous nonlocal elastic body can be written as: 

 

 ( , ) ( ) ( )nl

ij ijkl klx x C x dV x x V                   (1) 

 

Here, ,nl

ij ij   and ijklC  are the stress, strain and fourth-order elasticity tensor, respectively. '( , )x x │ │ is 

regarded as a nonlocal modulus, x x  represents a Euclidean distance and   is a material constant 

0 0( / )e a l  depending on the internal characteristics length, a and external characteristic length, l. Parameter 
0a is 

a lattice parameter, granular size, or the distance between C–C bonds. Parameter 
0e is estimated such that relations 

of nonlocal elasticity model could provide satisfactory atomic dispersion curves of plane waves by using 

approximations from atomic lattice dynamics. Since a constitutive law of integral form is difficult to implement, a 

simplified differential form of Eq. (1) is used as the basis: 

http://jim.sagepub.com/search?author1=A+Ghorbanpour+Arani&sortspec=date&submit=Submit
http://www.sciencedirect.com/science/article/pii/S0020722514000767
http://www.sciencedirect.com/science/article/pii/S0020722514000767
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NM.2153-5477.0000068
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NM.2153-5477.0000068
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2 2(1 ) nl

ij ijkl klg C             (2) 

 

In the above equation,    2 2 2 2 2/ /x y       is the Laplacian.  
22

0 0g e a is the nonlocal parameter. The 

displacement components in the x, y, and z directions are obtained from the Kirchhoff’s plate model, as follows [18]: 
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(3) 

 

where 
0 0,u v , and w are axial and transverse displacements of any point on mid-plane. Since the axial displacements 

at the mid-plane 
0 0( , )u v have a very small effect, they are neglected for the current analysis. The resulting strain 

components in the Cartesian coordinates can be derived by using the relations of Eq. (3), which are always considered 

to be the same for both nanoplates bulk and surface [18]: 
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(4) 

 

Assuming that both nanoplates bulk and surface are homogeneous and isotropic, the stress-strain relation of bulk 

material subjected to thermal effect are expressed by [37-40]: 

 
2 2

2 2

(1 ) (1 ) 0 (1 )
(1 ) (1 ) 0 (1 )
0 0 0

b

x x x x
b

y y y y
b

x yx y

E E E T
E E E T

G

     
      



                        
            

         

 

(5) 

 
where E, ν, G, α, and T denote the elastic modulus, Poisson’s ratio, shear modulus, thermal expansion coefficient, 

and uniform temperature change, respectively.  b is the superscript for bulk properties and effects. The constitutive 

relations of the surface layers s
+
 and s

-
, as given by Gurtin and Murdoch [7], can be expressed as [10, 18, 33, 48]: 

 

, , , ,

,

( ) ( )( ) ( ) , , , , ( )
2

, ,

s s s s s s

s s

z
z

h
u u u u x y z

u x y

         





          

  

     

 

         

 

         

 

 

(6) 

 

where  is the Kronecker delta and , .   x y    s  are the residual surface tension components in Newtons 

per meter under unconstrained conditions, while s  and s  are the surface Lame constants on the s
+
 and s

-
 surfaces, 

respectively. If the top and bottom layers have the same material properties, the stress–strain relations become 

[10,18,33,48]: 
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(7) 

 

The resultant stresses are defined as [10, 18, 33, 48]: 
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(8) 

 

Using Eqs. (2, 4, 5, 7, 8), the stress resultant can be expressed in terms of the displacement components as 

[10,18,33,48]: 
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(9) 

 

where 3 2/12(1 )D Eh   is the flexural rigidity of the nanoplate. The equations of motion, considering both the 

nonlocal effect and surface energy, can be derived using Hamilton’s principle. The variation of strain energy of the 

nanoplate, 
iU , can be written as [48]: 
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(10) 

 

The variation of potential energy of the conservative loads, 
eU , can be written as [37-40, 48]: 
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(11) 

 

where ,q N  , and 
thN  are the transverse and in-plane loads. 

0Wk and 
0Sk  are the Winkler and shear moduli of 

the foundation, respectively. The thermal force, thN  , can be expressed as [37-40]: 
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(12) 

 

To derive the governing equation of equilibrium, principle of virtual work is used. The principle can be stated in 

analytical form as [48]: 

 

0
( ) 0

t

i eU U dt           (13) 

 

Substituting Eqs. (10, 11, 13), the governing equations can be obtained, as follows [10, 18, 33, 37-40, 48]: 
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Fig. 1 shows the geometry of rectangular nanoplate and the loading conditions. In the present study, it is 

assumed that the nanoplate is free from any transverse loadings ( 0q  ). Using Eqs. (9,12), the governing Eq. (14) 

can be expressed in terms of displacement components, as follows [10,18,33,37-40,48]: 
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Fig .1 

(a) The geometry of rectangular nanoplate with surface layers and thermal loading, (b) Biaxial loading, (c) Uniaxial loading. 

3    SOLUTION PROCEDURE  

3.1 Navier's method 

Based on the Navier's method, the exact solution for buckling of rectangular nanoplates, regarding simply-supported 

boundary condition is expressed by: 
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(16) 

 

where /m a  , and / . n b   m and n are half-wave number along x and y direction. Substituting Eq.(16) into 

Eq.(15), the critical buckling load, crN , is obtained: 

For biaxial buckling , 0xx yy cr xyN N N N   . Therefore, the critical buckling load is expressed by: 
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For uniaxial buckling , 0xx cr yy xyN N N N   . Therefore, the critical buckling load is expressed by: 
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(18) 

 

where 2 2    . 

3.2 Finite difference method 

The finite difference method is a simple method for solving differential equations. In recent years, Karamooz Ravari 

et al. [49,50] studied nonlocal effect on the buckling of rectangular and circular nanoplates using FDM. The FDM 

substitutes the nanoplate differential equation and the expressions which define the boundary conditions with equal 

differences equations. Therefore, the solution of the bending problem is reduced to the simultaneous solution of a set 

of algebraic equations written for every nodal point within the nanoplate. Fig. 2 shows a rectangular nanoplate and 

the grid points which could be used in the finite difference method. By using this method, Eq. (19) can be used to 

estimate the derivative of the transverse displacement, w, for the i,j-th point as a function of its neighboring points. 
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Here 
xr and 

yr are the distance between two grid points in the x and y directions, respectively. Substituting Eq. 

(19) into Eq. (15) and developing a computer code in MATLAB the governing equation are solved. 
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Fig .2 

The rectangular nanoplate and finite difference grid points. 

3.3 Boundary conditions 

In this paper, the simply-supported and clamped boundary conditions are investigated. Therefore, in this subsection 

these boundary conditions are introduced. 

3.3.1 Simply-supported boundary conditions 

The simply-supported boundary conditions at all edges of nanoplate can be written as: 
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These conditions lead to the following expressions: 
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3.3.2 Clamped boundary conditions 

The clamped boundary conditions could be expressed as follows: 
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These conditions lead to the following expressions: 
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(24) 

4    RESULTS AND DISCUSSION   

In this section, it is attempted to demonstrate the surface energy and thermal effects on the buckling of rectangular 

nanoplate based on nonlocal elasticity theory. The validity of the suggested model is checked by comparing the 

results with those given in the literature. Moreover, the effects of important parameters including, the Winkler and 
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shear elastic moduli, the boundary conditions, in-plane biaxial and uniaxial loads, and width-to-length aspect ratio, 

on the surface stress effects are also studied. The isotropic material properties are taken as that of silver nanoplate. 

The material properties of the nanoplate are: 76 , 0.3E GPa   . The surface elastic modulus and surface residual 

stress are 1.22 /sE N m , and 0.89 /s N m  , respectively [26]. Moreover, 4

0 /W WK k a D and 2

0 /G GK k a D are 

non-dimensional Winkler and shear moduli of the elastic foundation, respectively. For all examples, supposed 
o1 , 10 , 1 , 50 , 100, 10, 0.47 / ,       s

W G
h nm a nm g nm T K K K N m  and 0.28 /s N m  , unless noted 

otherwise. The coefficient of thermal expansion is 6 11.9 10 K     [51]. For the sake of brevity, a six-letter symbol 

is used to represent the boundary conditions for the following four edges of the rectangular nanoplate, as shown in 

Fig. 3. 
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 C 
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S S SSCC 

 
 

 C 
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 C 

C 

C C CCCC 

 

Fig .3 

Combinations of boundary conditions, S: simply-supported, C: clamped. 

 

For analysis of numerical results, the buckling ratio is defined as follows: 

 

buckling ratio= 
Critical buckling load with surface stress effects (Ns)              (25) 
Critical buckling load without surface stress effects (N) 

 

Finite difference method results are sensitive to lower grid points, a convergence test is performed to determine 

the minimum number of grid points required to obtain stable and accurate results for Eq. (20). In Fig. 4, non-

dimensional buckling load ( 2 /crN a D ) of square nanoplate is plotted versus the number of grid points for various 

boundary conditions. Both of non-dimensional biaxial and uniaxial buckling loads are studied in Fig. 4. According 

to Fig. 4, the present solution is converging. From this figure, it is clearly seen that fourteen number of grid points 

(N=M=14) are sufficient to obtain the accurate solutions for the buckling analyses. It should be noted that, M and N 

are the number of grid points in the x and y directions, respectively. 
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(b) 

Fig .4 

Convergence study and minimum number of grid points required for obtaining accurate results for non-dimensional buckling 

load by finite difference method with various boundary conditions, (a) Biaxial buckling, (b) Uniaxial buckling. 

 

Table 1. indicates the non-dimensional buckling load ( 2 /crN a D ) of simply-supported square silver nanoplate 

versus nonlocal parameter for various length-to-thickness ratios, considering the surface energy effects but without 

considering the elastic medium and uniform temperature change. The results in [26] are based on an exact analytical 
solution. In the paper presented by Wang and Wang [26], the nonlocal effect is considered only for nanoplate bulk ,

while the present article by these authors, the nonlocal effect is considered for both nanoplate bulk and surface. This 

is reason of the difference between results presented by Wang and Wang and results presented by these authors. 

From this table, it is observed that the present results would be in good agreement with those of others reported in 

the literature [26] and also Navier’s solutions. 

  
Table 1  

Comparison of non-dimensional buckling load of square nanoplates with all edges simply-supported ( a 10 , 1.22 / ,snm E N m   

0.89 / , 0 , 0s

w GN m T K K K      ). 

g2 nm2 
References 

 
Biaxial buckling  Uniaxial buckling 

 a/h=2 5 10  a/h=2 5 10 

0 

[26] 

 

20.290 23.801 47.045 

 

40.580 47.602 94.090 

FDM 20.290 23.801 47.045 40.580 47.602 94.090 

Navier’s solutions 20.290 23.801 47.045 40.580 47.602 94.090 

1 

[26]   17.0358   20.5472   43.7910 

 

  34.0716   41.0944   78.6791 

FDM 16.979 20.405 43.506 33.957 40.809 76.893 

Navier’s solutions 16.979 20.405 43.506 33.957 40.809 76.893 

2 

[26]   14.7028   18.2142   41.4580   29.4056   36.4284   68.4212 

FDM 14.605 40.809 40.968 29.210 35.939  65.736 

Navier’s solutions  14.605 40.809 40.968  29.210 35.939  65.736 

 

Figs. 5(a) and 5(b) illustrate the influence of nanoplate aspect ratios, b a , on the biaxial and uniaxial buckling 

ratios of rectangular nanoplate for different boundary conditions, respectively. It can be seen that by increasing the 

plate aspect ratio to 1.5b a  , the surface stress effects on the biaxial and uniaxial buckling ratios would increase 

drastically, while for aspect ratio larger than 1.5, 1.5b a , the surface energy on the buckling has no significant 

effects. Moreover, for higher values of aspect ratios, the surface energy effects are more dependent on the boundary 

conditions. Since, by incrementing the size of the nanoplate, the bending stiffness would reduce; accordingly, the 

strain energy of the bulk material would decrease, while the surface free energy-to-bulk energy ratio advances. 

Figs. 6(a) and 6(b) demonstrate the effects of thickness, h, on the biaxial and uniaxial buckling ratios of square 

nanoplate for various boundary conditions. It is observed that by increasing the thickness of nanoplate, the biaxial 

and uniaxial buckling ratios would decrease seriously; therefore, the surface elasticity effects would also reduce 

drastically. Since by advancing the nanoplate thickness, the surface-to-volume ratio diminish; thus, the surface free 

energy-to-bulk energy ratio decreases. In addition, for higher degree of thickness, the surface stress effects are not 

dependent on the boundary conditions.  
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(b) 

Fig .5 

Buckling ratio of rectangular nanoplate versus aspect ratio, b/a, for various boundary conditions, (a) Biaxial buckling, (b) 

Uniaxial buckling. 
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(b) 

Fig .6 

Buckling ratio of square nanoplate versus thickness, h, for various boundary conditions, (a=50 nm), (a) Biaxial buckling, (b) 

Uniaxial buckling. 

 

Figs. 7(a, b) and 7(c, d) show the effects of Winkler and shear moduli on the buckling ratio of square nanoplates 

for different boundary conditions, respectively. For Fig. 7(a, b), the non-dimensional shear modulus is 10GK  and 

for Fig. 7(c, d), the non-dimensional Winkler modulus is 100WK  . It could be seen that by improving the modulus 

of elastic medium, the biaxial and uniaxial buckling ratios would decrease. Therefore, the surface stress effects 

could also decrease. In the same way, it is observed that the effects of the boundary conditions would also decrease. 

In addition, as the boundary conditions become more rigid, the effects of elastic medium would diminish more. 

Moreover, the effects of Winkler and shear moduli on the biaxial buckling are more noticeable than that of uniaxial 

buckling. It is clear that an elastic medium could have a stiffening effect on a structural plate. By continuous rise of 

the elasticity of a medium, the stiffening property of surface energy effect cannot show itself for higher values of 

medium elasticity. This comment could be repeated for boundary conditions of different type, i.e., the effect of 

changing boundary conditions cannot be observed clearly for severe values of medium stiffness. On the contrary, by 

advancing the stiffening property of the in-plane loading (from biaxial toward uniaxial), the stiffening property of 

elastic medium could manifest itself less. Since, for biaxial buckling problems, the in-plane compressive loading is 

applied from all four sides of the nanoplate, while for uniaxial buckling problem, this loading is applied from only 

two opposite sides. Therefore, the plate stiffness should be the highest for uniaxial buckling case, and the lowest for 

biaxial buckling case. 

Figs. 8(a) and 8(b) indicate the effects of uniform temperature changes on the biaxial and uniaxial buckling ratios 

of square nanoplates for different boundary conditions, respectively. It could be found that by augmenting the 

uniform temperature change, the biaxial and uniaxial buckling ratios would increase. Therefore, by increasing the 

temperature change, the value of surface energy effect would rise.  
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(d) 

Fig .7 

Buckling ratio of square nanoplates versus elastic moduli for various boundary conditions, (a) Winkler modulus and biaxial 

buckling, (b) Winkler modulus and uniaxial buckling, (c) Shear modulus and biaxial buckling, (d) Shear modulus and c 

buckling. 
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(b) 

Fig .8 

Buckling ratio of square nanoplates versus uniform temperature changes for various boundary conditions, (a) Biaxial buckling, 

(b) Uniaxial buckling. 

 

Figs. 9(a) and 9(b) show the effects of surface elastic modulus, ,sE  on the biaxial and uniaxial buckling ratios of 

square nanoplate for various boundary conditions. For Fig. 9, the surface residual stress is s 0.89 / . N m  It can be 

seen that by increasing the surface elastic modulus, the biaxial and uniaxial buckling ratios would increase 

drastically. Therefore, by increasing the surface elastic modulus, the value of surface effect would improve 

seriously. Moreover, for higher degree of surface elastic modulus, the surface stress effects are not dependent on the 

boundary conditions. In addition, it is observed that, the effects of surface elastic modulus on the uniaxial buckling 

are more noticeable than that of biaxial buckling. 

Figs. 10(a) and 10(b) demonstrate the effects of surface residual stress, 
s ,  on the biaxial and uniaxial buckling 

ratios of square nanoplate for various boundary conditions. For Fig.10, the surface elastic modulus is 
s 1.22 .E N m  It can be found that by augmenting the surface residual stress, the biaxial and uniaxial buckling 

ratios would advance drastically; therefore, the degree of surface energy effect would increase seriously. In addition, 
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for higher value of surface residual stress, the surface stress effects are dependent on the boundary conditions. This 

situation is the opposite of result surface elastic modulus, .sE  Moreover, it is observed that, the effects of surface 

residual stress on the biaxial buckling are more noticeable than that of uniaxial buckling. This result is the opposite 

of result surface elastic modulus, .sE  On the other hand, by comparing Figs. 9 and 10 it is found that the surface 

residual stress on the biaxial and uniaxial buckling are more important than that of surface elastic modulus.  

Since, the surface energy effects are total of surface elastic modulus and surface residual stress effects and 

surface residual stress on the biaxial and uniaxial buckling are more noticeable than that of surface elastic modulus. 

Therefore, the surface elasticity effects on the biaxial buckling are more pronounced than that of uniaxial buckling.  
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Fig .9 

Buckling ratio of square nanoplates versus surface elastic modulus for various boundary conditions, (a) Biaxial buckling, (b) 

Uniaxial buckling. 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 4 8 12 16 20

B
ia

xi
al

 B
uc

kl
in

g 
R

at
io

 (N
S 

/N
 )

Surface Residual Stress, τs (N/m)

1

2

3

4

0 4

  

SSSS 

SSSC         

SCSC 

SSCC 

SCCC 

CCCC        

 

 
(a) 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 4 8 12 16 20

U
ni

ax
ia

l B
uc

kl
in

g 
R

at
io

 (N
S 

/N
 )

Surface Residual Stress, τs (N/m)

  

SSSS 

SSSC         

SCSC 

SSCC 

SCCC 

CCCC        

 

1

2

3

0 4
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Fig .10 

Buckling ratio of square nanoplates versus surface residual stress for various boundary conditions, (a) Biaxial buckling, (b) 

Uniaxial buckling. 

5    CONCLUSIONS 

In this article, surface stress and nonlocal effects on the biaxial and uniaxial buckling of rectangular silver 

nanoplates resting on elastic foundations were studied using finite difference method (FDM). The uniform 

temperature change was used to investigate thermal effect. The small scale and surface energy effects were taken 

into account using the Eringen’s nonlocal elasticity and Gurtin-Murdoch’s theory, respectively. Using the principle 

of virtual work, the governing equations considering small scale for both nanoplate bulk and surface were derived. 

The finite difference method, uniaxial buckling, nonlocal effect for both nanoplate bulk and surface, silver material 

properties, and below-mentioned results were the novelty of this investigation. According to the selected numerical 

results, it was observed that the surface energy effects and temperature environments on the biaxial and uniaxial 

buckling were remarkable such that they cannot be ignored. Results show that the finite difference method could be 

used to solve a variety of problems with different types of boundary condition with little computational effort. It was 

observed that with increasing the nonoplate aspect ratio to 1.5b a  , the surface stress effects would increase 

drastically, while for aspect ratio larger than 1.5, 1.5b a , the surface energy on the biaxial and uniaxial buckling 
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had no significant effects. Moreover, it could be seen that by improving the thickness of nanoplate, h, the degree of 

surface stress effects diminished seriously. Furthermore, it was found that the influences of surface elastic modulus 

on the uniaxial buckling were more noticeable than that of biaxial buckling, but the influences of surface residual 

stress on the biaxial buckling were more noticeable than that of uniaxial buckling. In addition, it was observed that 

the effects of Winkler, shear moduli, and surface energy on the biaxial buckling were more pronounced than that of 

uniaxial buckling. 
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