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Abstract. Let R be a non-commutative ring with unity. The commuting graph of R denoted
by Γ(R), is a graph with a vertex set R \ Z(R) and two vertices a and b are adjacent if and
only if ab = ba. In this paper, we investigate non-commutative rings with unity of order pn

where p is prime and n ∈ {4, 5}. It is shown that, Γ(R) is the disjoint union of complete
graphs. Finally, we prove that there are exactly five commuting graphs of non-commutative
rings with unity up to twenty vertices and they are 3K2, 3K4, 7K2,K2 ∪ 2K6 and 4K2 ∪K6.
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1. Introduction

The study of algebraic structures has become an exciting research topic in recent years.
One of the algebraic graphs is commuting graph which was introduced in [2]. Let R
be a non-commutative ring with a unity 1 and let Z(R) denote the center of R. We
assume 1 ̸= 0. A ring with a unity is a division ring if every non-zero element a has a
multiplicative inverse (that is, an element x with ax = xa = 1). If X is either an element
or a subset of the ring R, then CR(X) denote the centralizer of X in R. We introduce a
graph with the vertex set R \ Z(R) and join two vertices a and b if a ̸= b and ab = ba.
This graph is called a commuting graph of R and is denoted by Γ(R). Akbari et.al [3]
determined the diameters of some induced subgraphs of Γ(Mn(D)), for a division ring
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D and n ⩾ 3. Also they showed that if F is an algebraically closed field or n is a prime
number and Γ(Mn(F )) is a connected graph, then diameter of Γ(Mn(F )) is equal to 4.

Let G be a simple graph on a vertex set V (G) and edge set E(G). A graph is said
to be connected if each pair of vertices are joined by a walk. If G is a graph, then the
complement of G, denoted by Gc is a graph with vertex set V (G) in which two vertices
are adjacent if and only if they are not adjacent in G. The complete graph Kn is the
graph with n vertices in which each pair of vertices are adjacent. We show G = tKm for
disjoint union of t complete graph of size m. G is complete t−partite graph if there is a
partition V1 ∪ V2 ∪ . . . ∪ Vt = V (G) of the vertex set, such that vi and vj are adjacent
if and only if vi and vj are in different parts of the partition. If |Vk| = nk, then G is
denoted by Kn1,n2,...,nt

.
In this paper, we investigate a non-commutative ring with a unity of order pn where

p is prime and n ∈ {4, 5}. We determine that CR(a) is a commutative ring for every
a ∈ R\Z(R). In addition, it is shown that, Γ(R) is the disjoint union of complete graphs.
Furthermore we prove that a graph with pn vertices where n < 4 is not a commuting
graph of a non-commutative ring with a unity. Finally, we show that there are exactly
five commuting graphs of non-commutative rings with a unity up to twenty vertices and
they are 3K2, 3K4, 7K2,K2 ∪ 2K6 and 4K2 ∪K6.

1.1 Preliminaries

First we give some results that we will use them in the next section.

Lemma 1.1 [2] Let R be a non-commutative ring and a− b be an edge in Γ(R)c. Then
there is a triangle a− (a+ b)− b− a containing the edge a− b in Γ(R)c.

Lemma 1.2 [2] For any non-commutative ring R and x, y ∈ V (Γ(R)c), there is a path
between x and y in Γ(R)c whose length is at most two.

Lemma 1.3 [7] Let R be a non-commutative ring with unity. Then [R : Z(R)] ⩾ 4.

Lemma 1.4 [8] Let R be a non-commutative ring and Z(R) ̸= {0}. Then [R : Z(R)] is
not prime.

Lemma 1.5 [6] Let R be a finite ring of order pn with unity, where p is a prime. If
n < 3, then R is commutative.

Lemma 1.6 [6] Let R be a finite ring of order m with a unity. If m has a cube free
factorization, then R is a commutative ring.

Lemma 1.7 [8] LetR be a non-commutative ring with unity and |R| = p3, then |Z(R)| =
p.

Lemma 1.8 Let R be a finite non-commutative ring with unity. Then

|Z(R)| | |R \ Z(R)|.

Proof. The proof is straightforward. ■

Theorem 1.9 Let R be a non-commutative ring with unity. Then Γ(R) is a finite graph
if and only if R is a finite ring.

Proof. Let Γ(R) be a graph of ordetm. Then |R\Z(R)| = m and so [R : Z(R)] = t < ∞.
If R = Z(R)∪(a1+Z(R))∪. . .∪(at−1+Z(R)), then |(a1+Z(R))∪. . .∪(at−1+Z(R))| = m.
Thus |R| = |Z(R)|+m and |Z(R)| < m. The converse is clear. ■
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Lemma 1.10 Let R be a non-commutative ring with unity and [R : Z(R)] ⩽ 7. Then
Γ(R) is not a connected graph.

Proof. By Lemma 1.4, [R : Z(R)] is not prime. By Lemma 1.3, [R : Z(R)] ∈ {4, 6}.
If [R : Z(R)] = 4, then R = Z(R) ∪ (a + Z(R)) ∪ (b + Z(R)) ∪ (c + Z(R)) where
a, b, c ∈ R \ Z(R). If ab = ba, then R = CR(a) ∪ CR(c). Hence CR(a) ⊆ CR(c) or
CR(c) ⊆ CR(a). This is contradiction by R is not commutative. Let |Z(R)| = t. Then
Γ(R)c = Kt,t,t.

If [R : Z(R)] = 6, then R = Z(R)∪ (a1+Z(R))∪ ...∪ (a5+Z(R)) where ai ∈ R\Z(R)
for 1 ⩽ i ⩽ 5. By Lemmas 1.1 and 1.2, there exists 1 ⩽ k ⩽ 5 such that every elements of
ak +Z(R) are adjacent to every element of ai +Z(R) for i ∈ {1, . . . , 5} \ {k} as vertices
in Γ(R)c. Since induced subgraph of ak +Z(R) in Γ(R) is a complete graph of size t, Kt

is one of the components of Γ(R). Therefore Γ(R) is not a connected graph. ■

2. Commuting graph of non-commutative rings with unity of order pn

In this section, we consider the commuting graph of non-commutative rings with unity
of order pn where p is prime and n ∈ {4, 5}.

Theorem 2.1 Let R be a non-commutative ring with a unity of order p4 and a ∈
R \ Z(R). Then CR(a) is a commutative ring.

Proof. We know that |Z(R)| ∈ {1, p, p2, p3}. Since R is a non-commutative ring with
unity, |Z(R)| = p or p2.

Let |Z(R)| = p. Since CR(a) is an addition subgroup of R and a ̸∈ Z(R), |C(R)| = p2

or p3. If |CR(a)| = p2, then by Lemma 1.5, CR(a) is a commutative ring. Suppose that
|CR(a)| = p3 and CR(a) be a non-commutative ring. By Lemma 1.7 , |Z(CR(a))| = p. It
is clear that Z(R) ∪ (a + Z(R)) ⊆ Z(CR(a)). Thus 2p ⩽ p. It is impossible. Therefore
CR(a) is a commutative ring.

Let |Z(R)| = p2. Then |CR(a)| = p3. If CR(a) is a non-commutative ring, then by
Lemma 1.7, |Z(CR(a))| = p. But Z(R) ⊆ Z(CR(a)). This is not true and so CR(a) is a
commutative ring. ■

Lemma 2.2 Let R be a non-commutative ring with unity of order p4. If a, b ∈ R \Z(R)
and ab = ba, then CR(a) = CR(b).

Proof. Let x ∈ CR(a). By Theorem 2.1, xb = bx and so x ∈ CR(a). Thus CR(a) ⊆ CR(b).
Similarly CR(b) ⊆ CR(a). Therefore CR(a) = CR(b). ■

Theorem 2.3 Let R be a non-commutative ring with a unity of order p4. If a, b ∈
R \ Z(R) and ab ̸= ba, then CR(a) ∩ CR(b) = Z(R).

Proof. If there exists a x ∈ CR(a)∩CR(b) \Z(R), then by Lemma 2.2, CR(x) = CR(a)
and CR(x) = CR(b). Thus CR(a) = CR(b) and so ab = ba, a contradiction. ■

Lemma 2.4 Let R be a non-commutative ring with unity of order p4 and |Z(R)| = p.
Then there exist a ∈ R \ Z(R) such that |CR(a)| = p2.

Proof. Since R is a non-commutative ring, |CR(a)| = p2 or p3 for a ∈ R \ Z(R). On
the contrary, suppose |CR(a)| = p3 for every a ∈ R \ Z(R). Let a, b ∈ R \ Z(R) and
ab ̸= ba. If there exists x ∈ CR(a), y ∈ CR(b) such that xy = yx, then by Lemma 2.2,
CR(a) = CR(x), CR(b) = CR(y) and CR(x) = CR(y). So CR(a) = CR(b). This is not true.
So for every x ∈ CR(a) and b ∈ CR(b), xy ̸= yx. By Theorem 2.3, CR(a)∩CR(b) = Z(R).
Thus Γ(R) is the disjoint union of l copies of the complete graph Kp3−p. So |V (Γ(R))| =
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l(p3 − p). On the other hand, we have |V (Γ(R)| = |R| − |Z(R)| = p4 − p. Therefore
p4 − p = l(p3 − p) and so p2 + p+ 1 = l(p+ 1) which is not true. ■

Theorem 2.5 Let R be a non-commutative ring with a unity of order p4. Then the
commuting graph of R is one of the following cases:

i. Γ(R) = (p2 + p+ 1)K(p2−p).

ii. Γ(R) = l1K(p2−p)

∪
l2K(p3−p), where l1 + l2(p+ 1) = p2 + p+ 1.

iii. Γ(R) = (p+ 1)K(p3−p2).

Proof. It follows immediately that |Z(R)| = p or p2. So the proof will be divided into
two cases:

Case 1. Let |Z(R)| = p. By Lemma 2.4, there is a ∈ R \ Z(R) such that |CR(a)| = p2.
Suppose that |CR(a)| = p2 for every a ∈ R\Z(R). Let a, b ∈ R\Z(R) and ab ̸= ba.
By Theorem 2.3, CR(a) ∩ CR(b) = Z(R). If x ∈ CR(a), y ∈ CR(b) and xy = yx,
then by Theorem 2.3, CR(a) = CR(x), CR(b) = CR(y) and CR(x) = CR(y). So
CR(a) = CR(b), which is impossible. Therefore, Γ(R) is the disjoint union of l
copies the complete graph Kp2−p. So |V (Γ(R))| = l(p2 − p). On the other hand,
we have |V (Γ(R))| = |R| − |Z(R)| = p4 − p. Thus p4 − p = l(p2 − p) and as
consequence l = p2 + p+ 1, and (i) is proved.
Let a, b ∈ R \ Z(R), |CR(a)| = p2 and |CR(b)| = p3. By Theorem 2.3, CR(a) ∩
CR(b) = Z(R). It is easy to check that if x ∈ CR(a) and y ∈ CR(b), then xy ̸= yx.
Hence Γ(R) is the disjoint union of l1 copies of the complete graph Kp2−p and l2
copies of the complete graph Kp3−p. So |V (Γ(R))| = l1(p

2 − p) + l2(p
3 − p). On

the other hand, we have |V (Γ(R))| = p4−p. Thus p4−p = l1(p
2−p)+ l2(p

3−p).
Therefore Γ(R) = l1K(p2−p) ∪ l2K(p3−p), where l1 and l2 satisfy in l1+ l2(p+1) =

p2 + p+ 1, and part (ii) is proved.
Case 2. Let |Z(R)| = p2. Then |CR(x)| = p3 for every x ∈ R \ Z(R). Suppose that

a, b ∈ R \ Z(R) and ab ̸= ba. By Theorem 2.3, CR(a) ∩ CR(b) = Z(R). Also if
x ∈ CR(a) and y ∈ CR(b), then xy ̸= yx. Thus Γ(R) is the disjoint union of l
copies of the complete graph of size p3 − p2 and so |V (Γ(R))| = l(p3 − p2). Since
|V (Γ(R))| = p4 − p2, p4 − p2 = l(p3 − p2). Therefore Γ(R) = lK(p3−p2) where
l = p+ 1, and this completes the proof of (iii).

■

Lemma 2.6 Let R be a non-commutative ring with a unity of order p5 such that Z(R)
is not a field. Then the following is hold:

i. For every a ∈ R \ Z(R), CR(a) is a commutative ring.
ii. If a, b ∈ R \ Z(R) such that ab = ba, then CR(a) = CR(b).
iii. If a, b ∈ R \ Z(R) such that ab ̸= ba, then CR(a) ∩ CR(b) = Z(R).

Proof. It is not hard to see that |Z(R)| is p2 or p3. Since Z(R) is an addition sub-
group of CR(a) and R is not commutative ring, |CR(a)| ∈ {p3, p4}. Let CR(a) be
a non-commutative ring of order p3. Then |Z(CR(a))| = p. This is not true since
Z(R) ⊆ Z(CR(a)). If CR(a) is a non-commutative ring of order p4, then |Z(CR(a))|
is p or p2. Since a ∈ R\Z(R) and Z(R) ⊆ Z(CR(a)), this is impossible. Hence CR(a) is a
commutative ring. The proof of parts (ii) and (iii) are likewise Lemma 2.2 and Theorem
2.3 , respectively. ■

Theorem 2.7 Let R be a non-commutative ring with unity of order p5 such that Z(R)
is not a field. Then the commuting graph of R is one of the following cases:
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i. Γ(R) = (p2 + p+ 1)Kp3−p2 .
ii. Γ(R) = l1Kp3−p2 ∪ l2Kp3−p, where l1 + l2(p+ 1) = p2 + p+ 1.
iii. Γ(R) = (p+ 1)Kp4−p3 .

Proof. Since R is a non-commutative ring and Z(R) is not a field, |Z(R)| ∈ {p2, p3}.

Case 1. Let |Z(R)| = p2. Then for a ∈ R \ Z(R), |CR(a)| = p3 or p4. Suppose that
for every a ∈ R \ Z(R), |CR(a)| = p4. By a similar argument as in Theorem
2.5, if x, y ∈ R, then xy ̸= yx. Thus Γ(R) is the disjoint union of l copies
of complete graph Kp4−p2 . Since |V (Γ(R))| = p5 − p, p2 + p + 1 = l(p + 1).
This is not true. So there exists a b ∈ R \ Z(R) such that |CR(b)| = p3. If for
every a ∈ R \ Z(R), |CR(a)| = p3, then Γ(R) = lKp3−p2 where l = p2 + p + 1.
Otherwise, suppose that |{a ; |CR(a)| = p3}| = l1 and |{b ; |CR(b)| = p4}| = l2.
Thus Γ(R) = l1Kp3−p2 ∪ l2Kp4−p2 where l1 + l2(p+ 1) = p2 + p+ 1.

Case 2. Let |Z(R)| = p3. Since Z(R) ⊆ CR(a) for every a ∈ R\Z(R), |CR(a)| = p4. Thus
Γ(R) = lKp4−p3 where l = p+ 1. This completes the proof.

■

3. Determine the Commuting graph up to twenty vertices

In this section we show that there are exactly five commuting graphs on non-commutative
ring with unity up to twenty vertices.

Lemma 3.1 Let G be a graph with 2p vertices where p is an odd prime number and
|V (G)| ̸= 6, then G is not a commuting graph of a non-commutative ring with unity.

Proof. Suppose G = Γ(R) where R is a non-commutative ring with a unity. So |R \
Z(R)| = 2p. By Lemma 1.8, |Z(R)| ∈ {2, p, 2p}.

If |Z(R)| = 2 or p, then |R| = 2+ 2p or 3p respectively. Since p ̸= 3 by Lemma 1.6, R
is a commutative ring. This is contradiction.

If |Z(R)| = 2p, then [R : Z(R)] = 2. This is a contradiction by Lemma 1.3. ■

Theorem 3.2 Let G be a graph with pq vertices where p and q are two distinct prime
numbers and p < q, p ∤ q + 1. Then G is not a commuting graph of a non-commutative
ring with unity.

Proof. Let R be a non-commutative ring with unity and G = Γ(R). We look for a
contradiction. |R \ Z(R)| = |V (G)| = pq. By Lemma 1.8, |Z(R)| | pq and so |Z(R)| ∈
{p, q, pq}.

If |Z(R)| = p, then |R| = p(q + 1). Since p ∤ q + 1, by Lemma 1.6, R is a commutative
ring, which is impossible.

If|Z(R)| = q, then |R| = q(p + 1). Since p < q, by Lemma 1.6, R is a commutative
ring. Which is not true.

If |Z(R)| = pq, then [R : Z(R)] = 2, which is a contradiction by Lemma 1.3. This
completes the proof. ■

Lemma 3.3 If G is a graph with pn vertices where n < 4, then G is not a commuting
graph of a non-commutative ring with unity.

Proof. On the contrary suppose R is a non-commutative ring with a unity and G =
Γ(R). Since R has unity, |Z(R)| ⩾ 2.

If |V (G)| = p, then by Lemma 1.8, |Z(R)| = p. Therefore |Z(R)| = |R \ Z(R)|. So
[R : Z(R)] = 2 which is a contradiction by Lemma 1.3.
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If G has p2 vertices, then |Z(R)| ∈ {p, p2}. If |Z(R)| = p2, then |Z(R)| = |R \ Z(R)|
and so [R : Z(R)] = 2. This is impossible. Hence |Z(R)| = p. So |R| = p(p + 1). By
Lemma 1.6, R is a commutative ring. This is not true.

Let |V (G)| = p3. By Lemma 1.8, |Z(R)| ∈ {p, p2, p3}. If |Z(R)| = p3, then [R :
Z(R)] = 2. This is impossible. Therefore |R| = p(p2 + 1) or p2(p+ 1). Since p2 ∤ (p2 + 1)
and p ∤ (p+ 1), by Lemma 1.6, R is a commutative ring. This is a contradiction.

■

Theorem 3.4 There are exactly five commuting graphs on non-commutative ring with
unity up to twenty vertices. They are 3K2, 3K4, 7K2,K2 ∪ 2K6 and 4K2 ∪K6.

Proof. Let G be a commuting graph of a non-commutative ring R with a unity. Let
|V (G)| ⩽ 20. By Lemmas 3.1, 3.2, 3.3, |V (G)| ∈ {6, 12, 14, 16, 18, 20}.

Let |V (G)| = n be even and let |Z(R)| = n
2 . Then |R| = 3n

2 . So [R : Z(R)] = 3. Which
is not true. So |Z(R)| ̸= n

2 .
Let |V (G)| = 16. By Lemma 1.8, |Z(R)| ∈ {2, 4}. So |R| ∈ {18, 20}. Hence by Lemma

1.6, R is a commutative ring. This is impossible.
Let |V (G)| = 18. Thus |Z(R)| ∈ {2, 3, 6}. So |R| ∈ {20, 21, 24}. By Lemma 1.6, R is a

commutative ring and this is contradiction.
If |V (G)| = 20, then by Lemma 1.8, |Z(R)| ∈ {2, 4, 5}. Hence |R| ∈ {22, 24, 25}. Again

R is a commutartive ring.
Therefore |V (G)| ∈ {6, 12, 14}. If |V (G)| = 6, then by Lemmas 1.3 and 1.8, |Z(R)| = 2

and so |R| = 8. By the proof of Lemma 1.10, G = 3K2.
If G has 12 vertices, then |Z(R)| = 4. So |R| = 16. By Theorem 2.5, G = 3K4. Let G

be a commuting greaph of order 14. Then |Z(R)| = 2 and |R| = 16. By Theorem 2.5,
G = 7K2,K2 ∪ 2K6 and 4K2 ∪K6. This completes the proof. ■

Conjecture:

The commuting graph of non-commutative rings with unity of order pn is not a connected
graph.
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