
Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

57

Proposing an Efficient Software-based Method to Enhance
Reliability of Computer Systems against Soft Errors

Nahid Saadati1, Bahman Arasteh2

1 Department of Mechatronic Engineering,Ahar Branch,Islamic Azad University,Ahar,Iran
Email:nahidsaadati13@gmail.com

2 Department of computer Engineering,Tabriz Branch,Islamic Azad University,
Tabriz,IranEmail:b_arasteh2001@yahoo.com

Abstract
In recent years, along with rapid developments in technology, computer systems have

increasingly become more integrated and more modular. Indeed, the reliability and efficiency of
computer systems are of high significance. Hence, the quantitative evaluation of the optimization
of reliability indexes in computer systems is considered to be a crucial issue. Reliability
enhancement of computer systems against electromagnet and radiation interferences is a critical
requirement in industries. Enhancing reliability can prevent system failure and fault and avoid
financial and humanistic losses. Accordingly, software can play outstanding roles in reducing the
number of errors in software programs. Consequently, software can enhance the reliability of
computer systems. In this paper, an efficient software-based method was proposed to enhance the
reliability of computer systems against soft errors. The results of the experiments revealed that the
proposed method had lower overhead, higher efficiency and higher error coverage than the earlier
methods.
Keywords: reliability, fault tolerance, error, slicing, redundancy

1- Introduction

Nowadays,we live in a world where
computers are ubiquitous. Sometimes, a
computer system such as a digital machine can
be easily identified, but sometimes a computer
system such as the electromechanical part of
machines cannot be identified easily. In line
with the extensive use of computer systems in
practical and functional and security
applications, there is a critical need to develop
products which users can rely on. Different
methods can be used to meet these needs which
have been developed based on the intensive use
of a machine or the faulty module. Such

methods have been proposed to sort out the
reliability issue of the practical and security
applications. Nevertheless, it should be pointed
out that, in recent years, achieving high
reliability and efficiency of programs is
considered to be a remarkable challenge.

Indeed, enhancing the reliability of computer
systems helps prevent the fault occurrence in
computer systems; consequently, reliability
enhancement can obstruct and prevent human
and financial and other kinds of losses. It can
be argued that software plays a remarkable role
in the reliability of computer systems. For
increasing reliability, computer systems should

N.Saadati , B.Arasteh : Proposing an Efficient Software-based Method…

58

be designed in such a way that they are
tolerable against errors and this is one of the
approaches for preventing system failures.
Error tolerability can be designed and
implemented with respect to the software or
hardware of the system. Error can occur in the
following two ways: persistent errors are the
first type of errors; in case this error type is not
corrected or removed and if it remains in the
system for a long time, it will lead to the system
failure. On the other hand, soft error or
transient error is the other error type which
appears within a short time and results in
irreparable and irremediable losses in the
system.

To achieve reliability in computer systems,
one can use the approach of error detection
which is regarded as one of the most effective
techniques. In general, not detecting or
identifying errors of computer systems at an
early time can result in the destruction and loss
of data and facilities. Furthermore, it should be
noted that, in some situation, human losses can
happen if such errors cannot be detected and
identified. Thus, it should be noted that there is
an increasing emphasis and focus on error
detection in scientific and industrial
communities. In recent years, due to not being
able to detect errors, different problems have
been created in computer systems. As a case in
point, The race 25 which is a machine
developed for radiation therapy has
erroneously used more radiation for six
patients and it is attributed to error occurrence
in the system.

The objective and rationale behind this study
is to make computer systems resistant to
electromagnet interferences and radiations
which are due to Alpha particles and cosmic

radiations. Also, another objective of this study
is to enhance the reliability and resistance of
computer systems considered to be an essential
requirement in different industries, namely
medical industry, military and aerospace
industries. Hence, it can be maintained that the
contribution of the present study regarding
reliability enhancement is of high significance
for modern community and the related
industries. In fact, the purpose of this study is
to propose a software-based method with
minimum overhead so as to enhance the
reliability of computer systems with safety-
critical applications against soft errors.

2- Identifying the Vulnerable Parts

The main responsibility of the proposed
method is for examine and investigate the
control flow, and to segment a program in the
form of basic blocks or segments which are
free of code branches. A specific instruction is
attributed to each block and an error is detected
by comparing the run time instruction with the
measurement instruction. The most important
techniques are related to the control flow
examination, i.e. RSCFC, ECCA and CFCSS.
In ECCA method, a unique prime number
greater than two is allocated to each block
which is referred to as the block identity. Two
lines of code are allocated for each block.
CFCSS method utilizes a GSR (global
signature register) which includes the run time
instruction for node Vn. This method examines
the control flow. The register compares the run
time instruction with the instruction produced
at the time of compilation and the branch
accuracy is determined based on this
comparison (i). At the compilation time, the
unique prime number Si is allocated to each

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

59

basic block. At the run time, if G register
includes a different amount of Si which is
allocated to the current node, an error will
occur in the program. The time G for
transmitting from one basic block to another is
produced and the instruction function produces
a new G in the target branch node. Using the
instruction of the previous node and the new
node, F function measures G through the
following equation:

F=f(G,di) =G xor di

(1)

RSCFC is considered to be a novel method in
which the program is divided into a number of
basic blocks. In the first stage, the
dependencies among blocks are extracted;

then, based on the type of dependency, a sign
is allocated to each block in which the
available dependencies are coded. For
detecting the available faults in the control
flow of a program, using the available data at
the beginning and the end of blocks, one can
use AND logical operation among the run time
signs. It should be highlighted that RSCFC
method has a better fault coverage and
efficiency than previous methods; moreover, it
consumes less memory.
For examining the efficiency and memory
consumption in the error injection method,
three programs, i.e. test program, insertion
sorter, rapid sorter and matrix multiplication
were selected.

3- The Proposed Method

The major aim of slicing was to best remove
program faults and errors by limiting and
restricting the search range so that the error
location can be detected. As the resulting set
is smaller and more accurate, the obtained
slice will be better. The issue of limiting and
restricting the search space is aimed at
discovering error cause in the programs. Error
elimination includes the two stages of error
detection and error correction. Detecting
error location is easily accomplished in small
programs. However, in large programs,
manual error detection is considered to be a
boring and time-consuming task. Hence,
using methods to automate and minimize the
search domain is essential. For example,
statistical methods and delta error elimination
are deemed to be methods which can
significantly contribute to error detection.
Nevertheless, it can be maintained that one of

the methods which has been extensively
studied in recent years is slicing. It is a
method used by programmers to summarize a
program. Hence, the reduced and executable
summarized program is referred to as a slice.
This method is used to break a program into
smaller parts; consequently, such smaller
parts will be easily perceived, tested and kept.
Perceiving and understanding the entire
program in order to make a change only in a
small part of it is highly time-consuming.
Hence, using techniques to minimize the
program is inevitable. With respect to slicing,
two issues should be taken into consideration:
Firstly, a slice from a program is obtained by
removing a set of program sentences and
phrases. Secondly, it includes the features of
the main program. An algorithm is
considered to be appropriate which not only
produces slices including the mentioned
features but are also small as much as
possible. Indeed, different concepts for

N.Saadati , B.Arasteh : Proposing an Efficient Software-based Method…

60

slicing the program and a number of methods
have been proposed for measuring the slices.
The major reason for the diversity of the
methods is that there are different programs,
and differing features are required in different
slices. According to the definition, a slice is a
set of instructions and the control of program
documents which are directly or indirectly
affected by the slicing criteria; however, they
do not necessarily create an executable
program. Slicing is accomplished in three
methods of data slicing, complete slicing and
related slicing. In data slicing, the slices are
measured based on the data dependencies
among the sentences and phrases. For slicing,
definition-use chains are firstly created and
the slices are measured. Depending on the
type of slices, the chains are created as
dynamic or static ones. In general, this
method operates successfully for the errors
which do not change the control flow. A
significant function of this type of slicing is
that it can obtain memory errors. In complete
slicing, besides data dependencies, control
dependencies are also taken into
consideration. In case erroneous sentence has
no direct impact on the output, data slicing
will not cover it. Indeed, there is a remarkable
distinction between static and dynamic slice
which was previously measured without
considering the input assumptions of the
program. In fact, it should be noted that, in
certain cases, dynamic slice relies on test.
Furthermore, related slicing, in addition to
data and control dependencies, includes
probabilistic dependencies of conditional
sentences which have no impact on the
respective sentence (error output). However,
if they were measured otherwise, they had

impacts on the measurement. This type of
slicing has no remarkable applications in real
errors. In first stage of the proposed method,
the program is sliced. The rationale behind
slicing is to facilitate error elimination from
the program by restricting and limiting the
search space so that the error location is easily
detected. As the obtained set is smaller and
more precise, the obtained slice will be more
desirable and better. Two issues should be
considered with respect to the slice: firstly, it
should be noted that a slice of the program is
obtained by eliminating a set of program
sentences. Secondly, it includes the features
of the main program. In the second stage, the
static slice of the algorithm which has no data
about the input values of the program is used.
At this time, the algorithm should preserve
the interesting behaviors of the main
programs. Consequently, a relatively small
piece of the program will be produced. In the
static slice, CFG flow control graph is used.
It has a slice which is the same as the static
slice criterion. They operate in an abstract
level. It is only the data which can be used
about each of the expressions; finally, they
are identified as dead variables. Hence, a
remarkable percentage of data and codes are
eliminated. Indeed, throughout these two
stages, only the instructions and data which
affect output remain.

In the third stage, the redundancy technique
was used; it is regarded as one of the most
important tools in creating error tolerance in
systems. Indeed, the data redundancy
technique used in the present study adds
redundant data to the main data and allows
the system to detect the errors; that is, the
blocks which are vulnerable to error are

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

61

identified. Then, these blocks are protected
against soft errors. Repetition is used for
protecting vulnerable and sensitive blocks
against soft error. In other words, other data
are defined as the redundant data for each
sensitive one and the instructions related to
the valuation and use of these instructions
should be repeated. Consequently, software
reliability is enhanced through minimum
redundancy.

4- Experiments

In this study, a test-based method was used
in the simple-scalar simulation environment.
Indeed, simple-scalar is deemed to be an
architecture-based simulator. It has a number
of functions and tasks where the most
common one is the architecture analysis. It
should be mentioned that the size of all the
codes used in the simulation was relatively
small since simple-scalar infrastructures
provide an extensive set of policies for
implementing the majority of common
models. Software architectures of the
programs are modeled by means of driving
implementation techniques in which the
sample instruction set and the input/output
sample module should be used. The
instruction set interprets each of the
instructions and directs the activities of the
hardware model through the interpreting
interface.

In this study, a large number of error
injection experiments were carried out to
investigate the impact of the proposed
method on the reliability enhancement of the
computer systems. In the respective
experiments, a set of programs are used for
test and trial. Different programs with

different features were tested in the study.
The error was injected on the code or data of
the program. Then, the behavior of the
program in the presence of the error was
examined. In the process of the experiments,
each program was tested and examined in two
stages: in the first stage, a set of errors was
injected on the main program. Then, after
applying the proposed method on each
program, in the second stage, a set of errors
was injected again on each of the respective
programs. Finally, the results of the two
stages were compared with one another
which revealed the impact and effectiveness
of the proposed method on enhancing the
reliability of programs with respect to the
injected errors.

4.2. Test and trial
The error model used in this study is a

single-bit error and the errors were injected at
the time of running the program. While
running the program, one bit of the program
data or code is changed as an error. In running
the program, depending on the size of the
code and program, one bit and a total of 5000
data errors and 5000 code errors were injected
in the memory space. Indeed, each program
had 1000 errors where one error was injected
in each run of the program. As mentioned
above, error injection was conducted in the
simple-scalar simulation environment.
Moreover, it should be noted that the errors
were injected randomly and uniformly in the
code space of memory. After the injection of
each error in the simple-scalar environment,
different results might occur as given in table
2 below which show the descriptions of the
programs used in the study. Also, table 3
shows the characteristics of the programs.

N.Saadati , B.Arasteh : Proposing an Efficient Software-based Method…

62

Table 1. Comparing memory overhead and efficiency

 Memory overhead (%) Performance overhead (%)
Program CFCSS ECCA RSCFC CFCSS ECCA RSCFC
BS 1.32 1.54 1.45 1.86 6.78 1.74
QS 1.33 1.32 1.38 1.33 1.86 1.21
MM 1.12 1.16 1.13 1.56 3.02 1.43
FFT 1.23 1.6 1.34 1.34 2.86 1.43

Table 2. Different occurred results

Class result Description Detection mechanism
Right The production of right

output by the program
Examining error results of the program
by golden running of the program

Silent data corruption (SDC) The production of wrong
output by the program

Examining the result of program errors
by golden running of the program

Detecting and removing the
interruption time by the
simulator

interruption: the program
fails

Exceptional system

Detecting exception by the
simulator

Failure: abnormal finishing
of the programs (invalid
instruction, invalid memory
address, overflow, error
classification)

Table 3. Characteristics of the tested programs

Tested program Description Input variables
Description range

Heap sort 9max) Sorting a list of numbers Random production of a
thread

N=100

Radix sort Sorting a list of numbers Random production of a
thread

N=100

N. queens Predicting the value of a numerical
variable

Some random numbers N=50

Binary search tree
(BST)

Conducting search operation Some random numbers N=100

Linked list Sorting a list of numbers Some random numbers N=100
Travelling salesman
problem (TSP)

Solving TSP The number of graph nodes
and the length of the node

N=100

Knapsack problem Sorting a list of numbers Some random numbers N=20
 An example before and after slicing the program: heap sort (max) sorting algorithm

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

63

Heap sort (max) is considered to be one of the
data sorting methods which have been
implemented based on the features of the
heap tree. According to the heap tree
definition, in a heap-max or min-heap, the
biggest or smallest value among the data is
located in the root of the tree. Finding the
largest or the smallest element among the

elements has the Ө (1) fixed cost. By
eliminating this element from the tree, the
next largest or smallest element is again
located in the root. Thus, by consecutive
elimination of the elements of the heap tree
and their insertion in the new place, a sorted
descending or ascending array will be
obtained.

Fig. 1. The profiles of the tested programs (A, B, C)

N.Saadati , B.Arasteh : Proposing an Efficient Software-based Method…

64

4.3. Results
In this study, three sets of error injection
experiments were conducted. In the first set
of experiments, 10000 errors were injected on
each of the tested programs and the respective
results were obtained. In the second set, 40%
of the selected instructions were randomly

repeated. Indeed, 40% of the random
instructions of the program were protected
against the soft errors. Then, the changed
programs were used in the error injection
experiments. Like the procedure adopted in
earlier studies, 10000 errors were injected in
the code space of the program.

Table 4.Error detection coverage in the main programs and the slice programs

Error detection Coverage
 TSP Heap Knap List N-

Queen
BST AVG

All the programs 86.3% 75.00% 89.20% 93.70% 71.00% 94.30% 84.47%
Sliced programs 83.10 73.00 78% 96.10% 87.12% 98.33% 85.96%

Fig.2. Error detection coverage in the main and sliced programs

As mentioned earlier, different kinds of
error injection including jump instructions
and changing the jump instructions were used
in the present study to evaluate the proposed
method. The error injection operations were
conducted on six tested programs on which
5000 errors were injected. The memory and
time of the manipulated programs were
evaluated according to the proposed
algorithm in the simulator. Then, depending

on the number of jump instructions, the
amount of memory consumption and the
running time of the program were extracted.
Then, the obtained results were
acknowledged. Memory and time overhead
resulting from the proposed method were
measured. The following tables and figures
depict the results of running the manipulated
programs by means of the proposed method.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Er
ro

r D
et

ec
tio

n
Co

ve
ra

ge

Benchmark

All of Program Sliced Program

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

65

Table. 5. The results of the time overhead in the manipulated programs using slice

Time overhead
Full duplication

overhead
The proposed

method overhead
TSP Heap Knap List N-

Queen
BST AVG

>100%

~ 68%
71.00% 62.00% 76.00% 79% 61.00% 59.00% 68.00%

Fig.3. The results of time overhead in the manipulated programs

Table. 6. The results of the memory overhead in the manipulated programs using slice

Time overhead Full duplication
overhead

The proposed
method overhead

TSP Heap Knap List N-
Queen

BST AVG
>100%

~ 66.50%

70.00% 60.00% 74.00% 77% 60.00% 58.00% 66.50%

Fig.4. The results of memory overhead in the manipulated programs

71.00%
62.00%

76.00% 79%

61.00% 59.00%
68.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

TSP Heap Knap List n-Queen BST AVG

Time overhead%

Time overhead

70.00%
60.00%

74.00% 77%

60.00% 58.00%
66.50%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

TSP Heap Knap List n-Queen BST AVG

memory overhead%

memory overhead

N.Saadati , B.Arasteh : Proposing an Efficient Software-based Method…

66

5- Conclusion

The results from the present study indicated
that the elimination of the instructions and
data by means of the program slicing led to a
reduction of the vulnerable instructions
coding instructions. That is, slicing had a
significant impact on their vulnerability.
Moreover, the results of the study revealed
that the proposed method had higher

efficiency and less time and memory
overhead. As discussed earlier in the paper,
there are four types of program slicing;
however, only the static slicing was used in
this study. As a direction for further research,
future researchers are recommended to
investigate and examine the effectiveness of
dynamic slicing, conditional slicing, and
approximately static slicing on the efficiency
and time and memory overhead of programs.

References

[1] O.Goloubeva, M. Rebaudengo, M. Sonze
Reorda, and M. Violante, SOFTWARE-
IMPLEMENTED HARDWARE FAULT
TOLERANCE. 2006.

[2] Croll,P.and Nixon, P.” Developing Safety within
a CASE Environment,” Proceedings of the TEEE
Colloquium on Computer Aided Software
Engineering Tools for Real-Time
Control,1991,p.8.

[3] Ignat, N., Nicolescu, B., savaria, Y. and
Nicolescu, G., ”Soft-Error Classification and
Impact Analysis on Real-Time Operating
System,” Proceedings of the Conference on
Design, Automation and Test in Europe (DATE
’06), Germany, 2006, pp.182-187.

[4] Reis, G. Chang, J., Vachharajani N., Rangan R.,
August I., “SWIFT: Software Implemented Fault
Tolerance”, Proceedings of the CGO’ 05,2005,
pp.243-254.

[5] A ,aprie, j. c, Randell , B. and Lanwehr Avizienis
,”Basic Concepts and Taxonmy of Dependable
and Secure Computing,” IEEE Transactions on
Dependable and Secure Computing, vol.1.no.1,,
2004, pp.11-33.

[6] Shirvani ,P.P., oh,N., McCluskey, E.J., and
Wood,D.L., “Software-Implemented Hardware
Fault ataoleranceExperiments COTS in Space,”
Proceedings of the International conference on
Dependable Systems and Network, New
york,NY, 2000, pp. 25-28.

[7] Yenier,U., Fault Tolerant Computing in Space
Environment and Software Implemented

Hardware Fault Tolerance Techniques, Technical
Report, Department of Computer Engineering,
Bosphorus University, Istanbul, 2003.

[8] Rebaudengo, M., Sonza Reorda, M., Torchiano,
M., and Violante, M., “Soft-error Detection
Through SoftwareFault-Tolerance Techniques”,
Proceedings of the IEEE International
Symposium on Defect and Fault Tolerancein
VLSI Systems, Albuquerque, NM, USA, Nov
1999, pp. 210-218.

[9] Randell, B., “System Structure for Software Fault
Tolerant,” IEEE Transaction on Software
Engineering, Vol. 1, No. 2, 1975, pp. 220-232.

[10] Avizienis A., “The N-Version Approach to Fault-
Tolerant Software,” IEEE Transaction on
Software Engineering, Vol. 11, No. 12, 1985, pp.
1491-1501

[11] Stefanidis, V. K., and Margarits, K. J.,
“Algorithm Based Fault Tolerance: Review and
Study,” Proceedings of the2004 International
Conference of Numerical Analysis and Applied
Mathematics (ICNAAM;04), 2004, pp. 1-8.

