تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,621 |
تعداد مشاهده مقاله | 78,331,048 |
تعداد دریافت فایل اصل مقاله | 55,377,499 |
Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations | ||
Theory of Approximation and Applications | ||
مقاله 2، دوره 11، شماره 1، مرداد 2017، صفحه 13-37 اصل مقاله (342.52 K) | ||
نوع مقاله: Research Articles | ||
نویسندگان | ||
Makkia Dammak* 1؛ Majdi El Ghord2 | ||
1University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis 09 doctor Zouhair Essafi Street 1006 Tunis,Tunisia | ||
2University of Tunis El Manar, Faculty of Sciences of Tunis, Campus Universities 2092 Tunis, Tunisia | ||
چکیده | ||
In this paper, we investigate the existence of positive solutions for the elliptic equation $\Delta^{2}\,u+c(x)u = \lambda f(u)$ on a bounded smooth domain $\Omega$ of $\R^{n}$, $n\geq2$, with Navier boundary conditions. We show that there exists an extremal parameter $\lambda^{\ast}>0$ such that for $\lambda< \lambda^{\ast}$, the above problem has a regular solution but for $\lambda> \lambda^{\ast}$, the problem has no solution even in the week sense. We also show that $\lambda^{\ast}=\frac{\lambda_{1}}{a}$ if $ \lim_{t\rightarrow \infty}f(t)-at=l\geq0$ and for $\lambda< \lambda^{\ast}$, the solution is unique but for $l<0$ and $\frac{\lambda_{1}}{a}<\lambda< \lambda^{\ast}$, the problem has two branches of solutions, where $\lambda_{1}$ is the first eigenvalue associated to the problem. | ||
آمار تعداد مشاهده مقاله: 285 تعداد دریافت فایل اصل مقاله: 206 |