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Abstract

This paper is concerned with a technique for solving Fredholm integro-differential
equations in the reproducing kernel Hilbert space. In contrast with the conven-
tional reproducing kernel method, the Gram-Schmidt process is omitted here
and satisfactory results are obtained. The analytical solution is represented in
the form of series. An iterative method is given to obtain the approximate so-
lution. The convergence analysis is established theoretically. The applicability
of the iterative method is demonstrated by testing some various examples.
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1 Introduction

Recently, the reproducing kernel method (RKM) has been a promis-
ing method which applied more and more for solving various prob-
lems such as ordinary differential equations, partial differential equa-
tions, differential-difference equations, integral equations, and so on
(see e.g. [1]-[18] and references there in). Among many literatures
related to RKM for solving various problems and even among a
bunch of extensive works related to RKM for solving integro - differ-
ential and integral equations, we just mention some more interesting
problems. An approximate solution of the Fredholm integral equa-
tion of the first kind in the reproducing kernel space was presented
by Du and Cui [5,6], solution of a system of the linear Volterra
integral equations was discussed by Yang et al. [18], solvability of
a class of Volterra integral equations with weakly singular kernel
using RKM was investigated in [2,3,11], Geng [9] explained how to
solve a Fredholm integral equation of the third kind in the repro-
ducing kernel space, and Ketabchi et al. [12] obtained some error
estimates for solving Volterra integral equations using RKM.

In [1] and some other places, a general technique for solving integro-
differential equations was discussed in the reproducing kernel space.
This general technique is based on the Gram-Schmidt (GS) orthog-
onalization process. In this study, we aim to explain how to con-
struct a reproducing kernel method without using this process. For
this purpose, we consider the following nonlinear Fredholm integro
- differential equation

u′(x) = F (x, u(x)) + Su(x) = T (x, u(x), Su(x)), (1.1)

where

Su(x) =
∫ b

a
k(x, s)G(u(s))ds,

subject to the initial condition u(a) = α in which functions G and
k and the nonlinear operator G are considered such that Eq.(1.1)
has a unique solution. Furthermore, we need to assume that F ,T
are continuous.
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The rest of the paper is organized as follows. In the next Section,
some preliminaries are represented. The method implementation is
discussed in Section 3. Section 4 is devoted to convergence analysis
of the method. For confirming the theoretical results, some numer-
ical examples are provided in Section 5. The paper will be closed
by a brief conclusion in the last Section.

2 Preliminaries

In this section, we follow the recent work by Cui et al. [4] and
represent some useful materials.

Definition 2.1 Let H be a Hilbert space of functions f : Ω → R.
Denote by < ., . > the inner product and let ‖.‖ =

√
< ., . > be

the induced norm in H. The function R : Ω × Ω → R is called a
reproducing kernel of H if the followings are satisfied

(1) Ry(x) = R(x, y) ∈ H,∀y ∈ Ω,
(2) f(y) =< f(x), Ry(x) >,∀f ∈ H, ∀y ∈ Ω.

Definition 2.2 A Hilbert space H of functions on a set Ω is called
a reproducing kernel Hilbert space if there exists a reproducing ker-
nel R of H.

Remark 2.1 The existence of the reproducing kernel of a Hilbert
space is due to the Riesz Representation Theorem. It is known that
the reproducing kernel of a Hilbert space is unique.

Theorem 2.1 [16] The reproducing kernel R of reproducing kernel
Hilbert space H is positive definite.

Definition 2.3 The function space W2[a, b] is defined as follows

W2[a, b] = {u|u, u′ ∈ AC[a, b], u, u′, u(2) ∈ L2[a, b], u(a) = 0}.

AC is Absolute Continuous.
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The inner product and norm in W2[a, b] are defined respectively by

<u, v>W2= u(a)v(a) + u′(a)v′(a) +
∫ b

a
u(2)(x)v(2)(x)dx,

∀u, v ∈ W2[a, b],

and
‖u‖W2 =

√
<u, u>W2 , ∀u ∈ W2[a, b].

The function space W2[a, b] is a reproducing kernel space and its
reproducing kernel R2 has the following reproducing property

u(.) =<u(x), R2(x, .)>W2 , ∀u ∈ W2[a, b].

The function space W2[a, b] is a reproducing kernel space and its
reproducing kernel is [1]

R2(x, y) =


1
6
(x− a)(2a2 − x2 + 3y(2 + x)− a(6 + 3y + x)) x ≤ y,

1
6
(y − a)(2a2 − y2 + 3x(2 + y)− a(6 + 3x+ y)) x > y.

Similarity the function space is a reproducing kernel space and its
reproducing kernel is [5]

W1[a, b] = {u|u ∈ AC[a, b], u′ ∈ L2[a, b], u(a) = 0}

R1(x, y) =

 1− a+ x, x ≤ y,

1− a+ y, x > y.

3 The method implementation

We rewrite Eq. (1.1) as follows

Lu(x) = u′(x) = T (x, u(x), Su(x)) = F (x, u(x))+
∫ b

a
k(x, s)G(u(s))ds,
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where L : W2[a, b] → W1[a, b] is an invertible bounded linear op-
erator [1], G is a nonlinear and continuous operator , and F , is an
arbitrary continuous function in W1[a, b]. W2[a, b] is a reproducing
kernel space defined according to the highest derivatives involved
in (1.1).
We choose a countable set of points {xi}∞i=1 in the interval [a, b],
and define

φi(x) = R1(x, xi), ψi(x) = L∗φi(x),

where L∗ is the adjoint operator of L. Obviously,

ψi(x) = L∗φi(x) =<L∗φi(x), R2(x, y)>W2=<φi(x), LyR2(x, y)>W1

= LyR2(x, y)|y=xi
where Ly indicates that the operator L applies to the function of y.

Theorem 3.1 Let {xi}∞i=1 be dense in the interval [a, b]. If Eq. (1.1)
has a unique solution, then it can be represented as

u(x) =
∞∑
j=1

ajψj(x), (3.1)

where the coefficients aj are determined by solving the following
semi-infinite system of linear equations

Ba = T, (3.2)

in which

B = [Lψj(xi)], i, j = 1, 2, . . . , a = [a1, a2, . . .]
T ,

and

T = [T (x1, u(x1), Su(x1)), T (x2, u(x2), Su(x2)), . . .]
T .

Proof. Since {xi}∞i=1 is dense in the interval [a, b], then ψj(x) is a
complete system in W2[a, b], see e.g.[4]. So the analytical solution

5



can be represented as Eq. (3.1). Since

< ψi(x), ψj(x) >w2=< L∗φi(x), ψj(x) >w2=< φi(x), Lψj(x) >w1

= Lψj(x)|x=xi
and

< u(x), ψj(x) >w2=< u(x), L∗φj(x) >w2=< Lu(x), φj(x) >w1

= T (xj, u(xj), Su(xj)),

according to the best approximation in Hilbert spaces [16], the co-
efficients aj are determined by (3.2). 2

The approximate solution of the problem is the m-term intercept
of the analytical solution which can be determined by solving a
m × m system of linear equations. We need to construct an iter-
ative method for solving (3.2). For this purpose, we choose the
number of points m, the number of iterations n and put the initial
function ua,m(x) = 0. Then, the approximate solution of Eq. (1.1)
is defined by

m∑
j=1

anjL(ψj(xi)) = T (xi, un−1,m(xi), Sun−1,m(xi)). (3.3)

Remark 3.1 There exists a unique solution for equations (3.3) due
to the strictly positive definiteness property of the reproducing ker-
nel.

Theorem 3.2 [12] The approximate solution un,m and its deriva-
tive u′n,m are both uniformly convergent.

The results of this section can be summarized in the following al-
gorithm.
ALGORITHM1

(1) Choose m collocation points in the interval [a, b].
(2) Set B = [Lψj(xi)], i, j = 1, 2, . . . ,m.
(3) Choose the number of iterations n.
(4) Set i = 0.
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(5) Set the initial function ua,m(x) = 0.
(6) Set i = i+ 1.
(7) Set T = [T (xj, ui−1,m(xj), Sui−1,m(xj))]

T , j = 1, . . . ,m.
(8) Solve Ba = T .
(9) Set ui,m(x) =

∑m
j=1 a

i
jψj(x).

(10) If i < n, then go to step 6, else stop .

The conventional reproducing kernel method which used the GS
orthogonalization process is represented in the following algorithm
[1].
ALGORITHM2

(1) Choose m collocation points in the domain set [a, b].
(2) Set φi(x) = R1(x, xi), i = 1, . . . ,m.
(3) Set ψi(x) = LyR2(x, xi)
(4) Set ψ̄i(x) =

∑i
k=1 βikψk(x), i = 1, . . . ,m, (βik which obtained

by the GS process).
(5) Choose an initial function u0(x).
(6) Set n = 1.
(7) Set Bn =

∑n
l=1 βnlT (xl, un−1(xl), Sun−1(xl)).

(8) Set un(x) =
∑n
j=1Bjψ̄j(x).

(9) If n < m, then set n = n+ 1 and go to step 7, else stop.

Remark 3.2 In comparison with Algorithm 2, Algorithm 1 needs
not to use the GS orthogonalization process but in step 8 of it,
we must to solve a linear system. The coefficient matrix of this
system is positive definite because of the positive definiteness of the
kernel. Therefore, it needs to decompose matrix B once using the
QR decomposition and to solve a triangular system in step 8.

4 Convergence analysis

In this section, we show that the approximate solution un,m is con-
verged to the analytical solution u uniformly. At first, the following
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lemma is given.

Lemma 4.1 For a positive constant M , A = {u| ‖u‖w2 ≤ M}
is a compact set in the space C[a, b] provided that

‖u′‖w2 ≤ c,

where c is a constant.

Proof. It is enough to show that A is a bounded and equicontinuous
set [16]. Since

‖R2(x, y)‖2w2
=< R2(x, y), R2(x, y) >w2= R2(x, x) < c0,

where c0 is a positive constant, there exists a constant c1 such that

|u(x)| = | < u(y), R2(x, y) >w2 | ≤ ‖u(y)‖w2‖R2(x, y)‖w2

≤ c1‖u(y)‖w2 .

For any u ∈ A , we have

|u(x)| ≤ c1M

Hence A is a bounded set in the space C[a, b]. On the other hand,

|u′(x)| = | < u(y),
∂R2(x, y)

∂x
>w2 | ≤ ‖u(y)‖w2‖

∂R2(x, y)

∂x
‖w2

≤ c2‖u(y)‖w2 ≤ c2M

Then for any u ∈ A and ε > 0, we have

|u(x+ h)− u(x)| ≤ |u′(η)||h| ≤ c2M |h|

where η ∈ [x, x+ h]. So, there exists δ = ε
c2M

such that for |h| < δ,
we get

|u(x+ h)− u(x)| < ε

Hence A is an equicontinuous set in the space C[a, b].�
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Theorem 4.1 If L is an invertible bounded linear operator and
T (x, u(x), Su(x)) is a nonlinear bounded operator, it can be deduced
that {un,m(x)}∞n=1 is the bounded sequence of functions in w2[a, b].

proof. We can write

‖un,m(x)‖2w2
=< un,m(x), un,m(x) >w2

=<
∑m
j=1 ajψj(x),

∑m
l=1 alψl(x) >w2

=
∑m
j=1 aj < ψj(x),

∑m
l=1 alψl(x) >w2

=
∑m
j=1 aj < φj(x),

∑m
l=1 alLψl(x) >w1

=
∑m
j=1 aj(

∑m
l=1 alLψl(xj))

= aTBa,

where
a = [aj], j = 1, 2, . . . ,m.

Now, since

B = [Lψj(xi)], i, j = 1, 2, . . . ,m,

a = B−1T

the assumptions imply that

‖un,m(x)‖w2 ≤M,

where M is a constant. 2

Theorem 4.2 Assume that {xi}∞i=1 is dense in [a, b] and the as-
sumptions of Theorem (4.1) and Lemma (4.1) hold. Then the ap-
proximate solution un,m is converged to the analytical solution u.

proof. For j = 1, 2, . . . ,m and n = 1, 2, . . ., we have

Lun,m(xj) = T (xj, un−1,m(xj), Sun−1,m(xj)).
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According to Lemma (4.1), there exists a convergent subsequence
{unl,m(x)}∞l=1 of {un,m(x)}∞n=1 such that unl,m(x) → un,m(x), uni-
formly as l → ∞, m → ∞. Then for j = 1, 2, . . . ,m and n =
1, 2, . . ., we derive

Lunl,m(xj) = T (xj, unl−1,m(xj), Sunl−1,m(xj)). (4.1)

Since the operators L and T are both continuous (according to the
structure of L and assumption on T ), after taking limit from both
sides of (4.1), it can be inferred that u is the analytical solution of
Eq. (1.1). So unl,m(x) is the approximate solution of Eq. (1.1). 2

5 Numerical results

In this section, we compare results of both Algorithms in solving
four various problems using the following norms

‖u− un,m‖∞ ' En,m = max1≤i≤m |u(xi)− un,m(xi)|,

‖u′ − u′n,m‖∞ ' E ′n,m = max1≤i≤m |u′(xi)− u′n,m(xi)|,

‖u− um‖∞ ' Em = max1≤i≤m |u(xi)− um(xi)|

where un,m and um are approximate solutions obtained by Algo-
rithms 1 and 2, respectively and u is the exact solution and u′n,m
is the derivative approximate solution obtained by Algorithm 1 ,u′

is the derivative exact solution. The results of Table 1 and Table 2
(for n = 5) confirm the superiority of Algorithm 1.

Example 5.1 If F (x, u(x)) = 1 − 1
3
x, Su(x) =

∫ 1
0 xu

2(s)ds and
u(0) = 0 , then the Fredholm integro-differential equation (1.1) has
the following exact solution u(x) = x.

Example 5.2 If F (x, u(x)) = −u(x) + 1
2
(exp(−2) − 1), Su(x) =∫ 1

0 u
2(s)ds and u(0) = 1 , then the Fredholm integro-differential

equation (1.1) has the following exact solution u(x) = exp(−x).
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Table 1
Results of Algorithms 1 and 2

Example 1 Example 2

m Em E5,m Em E5,m

2 1.00000 5.953285E − 4 0.63212 0.05508

4 0.09259 5.953282E − 4 0.59122 0.00591

8 0.01170 5.953279E − 4 0.57410 0.00093

16 0.00262 5.953267E − 4 0.57339 0.00005

32 0.00060 5.953252E − 4 0.57128 0.00001

Example 3 Example 4

m Em E5,m Em E5,m

2 1.00000 0.16437 0.54308 0.04361

4 0.56677 0.01709 0.25554 0.00494

8 0.06062 0.00302 0.05140 0.00090

16 0.02109 0.00050 0.01096 0.00019

32 0.01776 0.00024 0.00176 0.00004

Example 5.3 If F (x, u(x)) = cos(x)−1
4
x, Su(x) = −1

4

∫ π
2
0 xsu(s)ds

and u(0) = 0 ,then the Fredholm integro - differential equation (1.1)
has the following exact solution u(x) = sin(x).

Example 5.4 If F (x, u(x)) = sinh(x)+ 1
8
(1−exp(−1))x, Su(x) =

−1
8

∫ 1
0 xsu(s)ds and u(0) = 1 ,then the Fredholm integro - differential

equation (1.1) has the following exact solution u(x) = cosh(x).
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Table 2
Results of Algorithms 1 for E′5,m

m Example 1 Example 2 Example 3 Example 4

2 1.1906570E − 4 0.027062 0.06395 0.001815

4 1.1906556E − 4 0.002455 0.00797 0.000156

8 1.1906549E − 4 0.000561 0.00189 0.000027

16 1.1906528E − 4 0.000067 0.00081 0.000006

32 1.1906516E − 4 0.000042 0.00058 0.000001

6 Conclusion

In this work, we proposed an iterative algorithm for solving non-
linear Fredholm integro - differential equations on the basis of the
reproducing kernel Hilbert space without using the Gram-Schmidt
orthogonalization process. The results of some numerical examples
show that the present method could be an accurate and reliable
analytical-numerical technique. Examples presented here belong to
different categories such as linear or nonlinear problem .Neverthe-
less, our results only apply to the given examples; this, of course,
does not mean that it holds in general. The advantage of the ap-
proach is that the method can be easily implemented. It seems that
the method can be also applied for solving other nonlinear integro-
differential equations.

12



References

[1] O. Abu Arqub, M. Al-Smadi, N. Shawagfeh, Solving integro-
differential equations using reproducing kernel Hilbert space
method, Applied Mathematics and Computation, 219 (2013) 8938-
8948.

[2] Z. Chen, W. Jiang, The exact solution of a class of Volterra
integral equation with weakly singular kernel,Applied Mathematics
and Computation, 217 (2011) 7515-7519.

[3] Z. Chen, Y. Lin, The exact solution of a class of linear integral
equation with weakly singular kernel,Journal of Mathematical
Analysis and Applications,344 (2008) 726-736.

[4] M.G. Cui, Y. Lin, Nonlinear numerical analysis in the reproducing
kernel space, 2009, Nova Science Pub. Inc., Hauppauge.

[5] H. Du, M.G. Cui , Approximate solution of the Ferdholm integral
equation of frist kind in a reproducing kernel space,Applied
Mathematics letters, 21 (2008) 617-623.

[6] H. Du, M.G. Cui, Representation of the exact solution and stability
analysis on the Ferdholm integral equation of frist kind in a
reproducing kernel space, Applied Mathematics and Computation,
182(2006) 1608-1614.

[7] F.Z. Geng, M.G. Cui, A reproducing kernel method for solving
nonlocal fractional boundary value problems,Applied Mathematics
letters, 25 (2012) 818-823.

[8] F.Z. Geng, S.P. Qian, Reproducing kernel method for singularly
perturbed turning point problems having twin boundary layers,
Applied Mathematics letters, 26 (2013) 998-1004.

[9] F.Z. Geng, Solving integral equation of the third kind in the
reproducing kernel space,Bulltein Iranian Math. Society, 201 (2011)
1-9.

[10] F.Z. Geng, S.P. Qian, S. Li, A numerical method for singularly
perturbed turning point problems with an interior layer, Journal
of Computational and Applied Mathematics,255(2013) 97-105.

13



[11] W. Jiang, M.G. Cui, The exact solution and stability analysis for
integral equation of third or frist kind with singular kernel,Applied
Mathematics and Computation,202(2008) 666-674.

[12] R. Ketabchi, R. Mokhtari, E. Babolian, Some error estimates for
solving Volterra
integral equations by using the reproducing kernel method,Journal
of Computational and Applied Mathematics,273(2015) 245-250.

[13] R. Ketabchi, R. Mokhtari ,E. Babolian, A new approach for
solving Volterra integral equations by using the reproducing kernel
method,International Journal of industrial mathematics,9(2017) 21-
26.

[14] M. Mohammadi, R. Mokhtari, Solving the generalized regularized
long wave equation on the basis of
a reproducing kernel space,Journal of Computational and Applied
Mathematics,235(2011) 4003-4011.

[15] M. Mohammadi,R. Mokhtari, A new algorithm for solving one-
dimensional Schrödinger equations in the reproducing kernel space,
Iranian J. Sci. Tech. Trans.A.,37 (2013) 546-523.

[16] M. Mohammadi, R. Mokhtari, A reproducing kernel method for
solving a class of nonlinear system of PDEs,Mathematical Modelling
and Analysis,19 (2014) 180-198.

[17] R. Mokhtari, F. Toutian Isfahani, M. Mohammadi, Reproducing
kernel method
for solving nonlinear differential-difference equations,Abstract and
Applied Analysis,(2012) Article ID 514103.

[18] L.H. Yang, J.H. Shen, Y. Wang, The reproducing kernel method for
solving the system of linear Volterra integral equations with variable
coefficients,Journal of Computational and Applied Mathematics,236
(2012) 2398-2405.

14


