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1 Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex
subset of H. A mapping T of C into itself is nonexpansive if ‖Tx−Ty‖ ≤
‖x− y‖ for each x, y ∈ C, we denote F(T) the set of fix points of T. The
strong(weak) convergence of {xn} to x is written by xn → x (xn ⇀ x) as
n→∞.
For any x ∈ H, there exists a unique nearest pointin C, denoted it by
PC(x) such that

‖x− PCx‖ ≤ ‖x− y‖, for all y ∈ C,

such that a mapping PC from H onto C is called the metric projection.
Recall that H satisfies the Opial’s condition [6] if for any sequence {xn}
with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

holds for every y ∈ H with x 6= y. A self mapping f : C → C is a
contraction if there exists α ∈ (0, 1) such that ‖f(x)− f(y)‖ ≤ α‖x− y‖
for each x, y ∈ C.
An operator A is said to be a strongly positive linear bounded operator
on H, if there is a constant γ̄ > 0 with property

〈Ax, x〉 ≥ γ̄‖x‖2, for all x ∈ H.

Let F be a bifunction of C × C into R. The equilibrium problems for
C × C → C, is to find x ∈ C such that

F (x, y) ≥ 0, for all y ∈ C. (1.1)

The set of solution of Eq.(1.1) is denoted by EP (F ). Several problems in
physics, optimization, and economics reduce to find a solution of Eq.(1.1)
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[1], [4]. We consider the following iteration [10]

Un,n+1 := I,

Un,n := λnSnUn,n+1 + (1− λn)I,

Un,n−1 := λn−1Sn−1Un,n + (1− λn−1)I,
...

Un,k := λkSkUn,k+1 + (1− λk)I,
...

Un,2 := λ2S2Un,3 + (1− λ2)I,

Wn = Un,1 := λ1S1Un,2 + (1− λ1)I,

(1.2)

where λ1, λ2, . . . are real numbers such that 0 ≤ λn ≤ 1, and S1, S2, . . .
be an infinite nonexpansive mappings. It is clear that nonexpansiviety of
each Sn ensure the nonexapnsivity of Wn. Such a mapping Wn is called
W− mapping generated by Sn, Sn−1, . . . , S1 and λn, λn−1, . . . , λ1.
In this paper, by intuition from [7], a new iterative scheme is introduced.
This scheme find a common solution of the equilibrium problem (EP)
and fixed point problem for an infinite family of nonexpansive mappings.
Also, we prove a strong convergence theorem.
The following lemmas will be useful for proving the main results of this
aticle:

Lemma 1.1 [8] Let C be a nonempty closed convex subset of a Banach
space E and {Sn} : C → C be a family of infinitely nonexpansive map-
pings such that

⋂∞
n=1 F (Sn) 6= ∅, and {λn} be a sequence of positive num-

bers in [0, b] for some b ∈ (0, 1). For any n ≥ 1, let Wn be the W -mapping
of C into itself generated by Sn, Sn−1, . . . , S1 and λn, λn−1, . . . , λ1. Then
Wn is asymptotically regular and nonexpansive. Further, if E is strictly
convex, then F (Wn) =

⋂n
i=1 F (Si).

Lemma 1.2 [8] Let C be a nonempty closed convex subset of a strictly
convex Banach space E. Let {Sn} : C → C be a family of infinitely
nonexpansive mappings such that

⋂∞
n=1 F (Sn) 6= ∅ and {λn} be a sequence

of positive numbers in [0, b] for some b ∈ (0, 1). Then, for every x ∈ C
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and k ≥ 1 lim
n→∞

Un,kx exists.

Lemma 1.3 [8] Let C be a nonempty closed convex subset of stricly con-
vex Banach E .Let {Sn} : C → C be a family of infinitely nonexpansive
mappings such that

⋂∞
n=1 F (Sn) 6= ∅. and {λn} be a sequence of positive

numbers in [0, b] for some b ∈ (0, 1). Then W is a nonexpansive mapping
and F (W ) =

⋂∞
n=1 F (Sn).

Lemma 1.4 [2] Let C be a nonempty closed convex subset of a Hilbert
space H and {Sn} : C → C be a family of infinitely nonexpansive map-
pings such that

⋂∞
n=1 F (Sn) 6= ∅ and {λn} be a sequence of positive num-

bers in [0, b] for some b ∈ (0, 1). If Kis any bounded subset of C, then
lim sup
n→∞

‖Wx−Wnx‖ = 0.

Lemma 1.5 [5] Assume A is a strongly positive linear bounded operator
on a Hilbert space H with coefficient γ > 0 and 0 < ρ < ‖A‖−1. Then
‖I − ρA‖ ≤ I − ργ.

Lemma 1.6 [9] Let {xn} and {yn} be bounded sequences in a Banach
space E and {βn} be a sequence in [0, 1] with 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn <

1. Suppose xn+1 = (1−βn)yn+βnxn for all integers n ≥ 1 and lim sup
n→∞

(‖yn+1−
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then lim

n→∞
‖yn − xn‖ = 0.

Lemma 1.7 [2] Let H be a real Hilbert space. Then the following holds:

(a) ‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉 for all x, y ∈ H,
(b) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2,
(c) ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉.

Lemma 1.8 [1] Let K be a nonempty closed convex subset of H and F
be a bi-function of K ×K into R satisfying the following conditions:

(A1) F (x, x) = 0 for all x ∈ K,
(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ K,
(A3) for each x, y, z ∈ K

lim
t→0

F (tz + (1− t)x, y) ≤ F (x, y),
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(A4) for each x ∈ K, y 7→ F (x, y) is convex and lower semi-continuous.Let
r > 0 and x ∈ H.
Then, there exists z ∈ K such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ K.

Lemma 1.9 [3] Let K be a nonempty closed convex subset of H and let
F be a bifunction of K×K into R satisfying (A1)− (A4). For r > 0 and
x ∈ H , define a mapping Tr : H → K as follows:

Tr(x) = {z ∈ K : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ K},

for all x ∈ H. Then the following hold

(i) Tr is single valued map,
(ii) Tr is firmly nonexpansive, that is , for any x, y ∈ H

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉,

(iii) F (Tr) = EP (F ),
(iv) EP (F ) is closed and convex.

Lemma 1.10 [11] Assume {an} be a sequence of nonnegative numbers
such that

an+1 ≤ (1− αn)an + δn,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in real number
such that

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞;

(ii) lim sup
n→∞

δn
αn
≤ 0 or

∞∑
n=1

|δn| <∞,

then lim
n→∞

an = 0.
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2 Explicit viscosity iterative algorithm

In this section, a new iterative scheme for finding a common element of
the set of solutions for a equilibrium problems and the set of common
fixed point for an infinite family of mappings in Hilbert space, is intro-
duced.

Theorem 2.1 Let

• C be a nonempty closed convex subset of a real Hilbert space H,
• f be a ρ−contractive map on C,
• J = {1, 2, . . . , k} be a finite index set,
• For each i ∈ J , let Gi be a bifunction from C × C into R satisfying

(A1)− (A4),
• A be a strongly positive linear bounded operator on H with coefficient
$ > 0,
• {Sn} : H → H be a family of infinite nonexpansive mappings,
• ⋂k

i=1 F (W )
⋂
EP (Gi) 6= ∅ where F (W ) =

⋂n
j=1 F (Sj),

• {xn} be the sequence generated as following :

G1(un,1, y) + 1
rn
〈y − un,1, un,1 − xn〉 ≥ 0,

G2(un,2, y) + 1
rn
〈y − un,2, un,2 − xn〉 ≥ 0,

...

Gk(un,k, y) + 1
rn
〈y − un,k, un,k − xn〉 ≥ 0,

θn = 1
k

∑k
i=1 un,i,

yn = βnγf(θn) + (I − βnA)θn,

xn+1 = αnxn + (1− αn)Wnyn,

where {Wn} is a sequence defined by Eq.(1.2). Also, {αn}, {βn} ⊂
[0, 1], rn ⊂ (0,∞) and 0 < γ < $

ρ
.

Suppose
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(C1): lim
n→∞

βn = 0,
∞∑
n=1

βn =∞,

(C2): lim inf
n→∞

rn > 0, lim
n→∞

(rn+1 − rn) = 0;

(C3): 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1,

(C4): for each i = 1, 2, . . . , k 0 < λi ≤ c < 1.

Then

(i) the sequence {xn} is bounded.
(ii) lim

n→∞
‖xn+1 − xn‖ = 0.

(iii) lim
n→∞
‖Wnyn − yn‖ = 0.

Proof. From (C1), we may assume that βn ≤ ‖A‖−1 for all n ≥ 1.
By Lemma 1.5, we obtain ‖I − βnA‖ ≤ 1 − βn$ . It is clear that
P⋂k

i=1
F (W )

⋂
EP (Gi)

(I − A − γf) is a contraction of C into itself. Indeed,

for all x, y ∈ C

‖P⋂k

i=1
F (W )

⋂
EP (Gi)

(x)− P⋂k

i=1
F (W )

⋂
EP (Gi)

(y)‖

≤ ‖(I − A+ γf)(x)− (I − A+ γf)(y)‖

≤ ‖I − A‖‖x− y‖+ γ‖f(x)− f(y)‖

≤ (1−$)‖x− y‖+ γρ‖x− y‖

= (1− ($ − γρ))‖x− y‖.

(i): Let x∗ ∈ ⋂k
i=1 F (W )

⋂
EP (Gi). Since un,i = Trn,ixn and x∗ = Trn,ix

∗,
we see for any n ≥ N

‖un,i − x∗‖ = ‖Trn,ixn − Trn,ix∗ ≤ ‖xn − x∗|‖,

thus

‖θn − x∗‖ ≤ ‖xn − x∗‖. (2.1)

Since f is ρ−contraction, we have
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‖yn − x∗‖= ‖βnγf(θn) + (I − βnA)θn − x∗‖
= ‖βn(γf(θn)− Ax∗) + (I − βnA)(θn − x∗)‖
≤ βn‖γf(θn)− Ax∗‖+ ‖I − βnA‖‖θn − x∗‖
≤ βnγ‖f(θn)− f(x∗)‖
+ βn‖γf(x∗)− Ax∗‖+ (1− βn)$‖xn − x∗‖.

From which it follows that

‖yn − x∗‖ ≤ (1− βn($ − γρ))‖xn − x∗‖+ βn‖γf(x∗)− Ax∗‖. (2.2)

In viwe of Eq. (2.1) and Eq.(2.2), we obtain that

‖xn+1 − x∗‖ = ‖αnxn + (1− αn)Wnyn − x∗‖
= ‖αn(xn − x∗) + (1− αn)(Wnyn − x∗)‖
≤ αn‖xn − x∗‖+ (1− αn)‖yn − x∗‖
≤ αn‖xn − x∗‖+ (1− αn){(1− βn($ − γρ))‖xn − x∗‖

+βn‖γf(x∗)− Ax∗‖}
= (1− αn)(1− βn($ − γρ))‖xn − x∗‖

+βn($ − γρ)(1− αn)
‖f(x∗)− Ax∗‖

$ − γρ
.

It follows by induction that

‖xn+1 − x∗‖ ≤ max {‖x1 − x∗‖,
‖f(x∗)− Ax∗‖

$ − γρ
}.

Therefore, the sequence {xn} is bounded and also {yn}, {θn} are bounded.
(ii): Notic that

‖yn+1 − yn‖= ‖(I − βn+1A)(θn+1 − θn) + (βn − βn+1)Aθn
+γ{βn+1(f(θn+1)− f(θn)) + f(θn)(βn+1 − βn)}‖
≤ (1− βn+1$)‖θn+1 − θn‖+ |βn − βn+1|‖Aθn‖

+γβn+1ρ‖θn+1 − θn‖+ γ|βn+1 − βn|‖f(θn)‖.

It follows that

‖yn+1 − yn‖ ≤ (1− βn+1($ − γρ))‖θn+1 − θn‖+ |βn+1 − βn|M. (2.3)
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where M = Sup n≥1 {‖Aθn‖+ ‖γ(θn)‖}.

Moreover, we have

Gi(un+1,i, un,i) +
1

rn+1

〈un,i − un+1,i, un+1,i − xn+1〉 ≥ 0, (2.4)

textbf1 ≥ i ≥ k. (2.5)

and

Gi(un,i, un+1,i) +
1

rn
〈un+1,i − un,i, un,i − xn〉 ≥ 0. (2.6)

Combining Eq.(2.5) and Eq.(2.6), we obtain

0 ≤ rn+1{Gi(un+1,i, un,i) +Gi(un,i, un+1,i)}

+〈un,i − un+1,i, un+1,i − xn+1 −
rn+1

rn
(un,i − xn)〉

≤ 〈un,i − un+1,i, un+1,i − xn+1 −
rn+1

rn
(un,i − xn)〉,

from which it follows that

〈un,i−un+1,i, un,i−un+1,i+xn+1−xn+xn−un,i+
rn+1

rn
(un,i−xn)〉 ≤ 0 (2.7)

which implies that

‖un+1,i − un,i‖ ≤ ‖xn+1 − xn‖+
|rn+1 − rn|

rn
‖xn − un,i‖. (2.8)

Using the condition (C2) and noting that there exists b > 0 such that
rn > b > 0, we obtain

‖θn+1 − θn‖ ≤
1

k

k∑
i=1

‖un+1,i − un,i‖ ≤ ‖xn+1 − xn‖+
|rn+1 − rn|

rn
Ḿ (2.9)
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and

‖θn+1 − θn‖ ≤ ‖xn+1 − xn‖+
Ḿ

b
|rn+1 − rn|, (2.10)

where Ḿ := 1
k

k∑
i=1

‖xn − un,i‖ <∞.

Moreover, we note that

‖Wn+1yn −Wnyn‖ = ‖λ1S1Un+1,2yn + (1− λ1)yn
−(λ1S1Un,2yn + (1− λ1)yn)‖

≤ λ1‖Un+1,2yn − Un,2yn‖
≤ λ1‖λ2S2Un+1,3yn + (1− λ2yn)

−(λ2S2Un,3yn + (1− λ2)yn)‖
≤ λ1λ2‖Un+1,3yn − Un,3yn‖

...

≤ (
n∏

m=1

λm)‖Un+1,n+1yn − Un,n+1yn‖

= (
n∏

m=1

λm)‖λn+1Sn+1Un+1,n+2yn

+(1− λn+1yn − yn‖

= (
n∏

m=1

λm)‖λn+1Sn+1yn − λn+1)yn‖

= (
n+1∏
m=1

λm)‖Sn+1yn − yn‖ ≤ M̂(
n+1∏
m=1

λm) (2.11)

where M̂ := Sup n≥1 {‖Sn+1yn − yn‖}.
Combining Eq.(2.3), Eq.(2.10) and Eq.(2.11), we obtain
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‖Wn+1yn+1 −Wnyn‖= ‖Wn+1yn+1 −Wn+1yn +Wn+1yn −Wnyn‖
≤‖yn+1 − yn‖+ ‖Wn+1yn −Wnyn‖

≤‖θn+1θn‖+M |βn+1 − βn|+ M̂(
n+1∏
m=1

λm)

≤‖xn+1 − xn‖+
Ḿ

b
|rn+1 − rn|

+M |βn+1 − βn|+ M̂(
n+1∏
m=1

λm).

We have

lim sup
n→∞

(‖Wn+1yn+1 −Wnyn‖ − ‖xn+1 − xn‖) ≤ 0.

From Lemma 1.6, we see that

‖Wnyn − xn‖ → 0 , as n→∞. (2.12)

which implies that

lim
n→∞
‖xn+1 − xn‖ = lim

n→∞
(1− αn)‖Wnyn − xn‖ = 0

(iii): We shall prove that lim
n→∞
‖xn − zn‖ = 0.

Notic that

‖un,i − x∗‖2 ≤ 〈Trn,i
xn − Trn,i

x∗, xn − x∗〉

= 1
2
{‖un,i − x∗‖2 + ‖xn − x∗‖2 − ‖un,i − xn‖2}

thus

‖un,i − x∗‖2 ≤ ‖xn − x∗‖2 − ‖un,i − xn‖2. (2.13)
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From Eq.(2.13), we get

‖θn − x∗‖ = ‖
k∑
i=1

1

k
(un,i − xn)‖2

≤ ‖xn − x∗‖2 − 1
k

k∑
i=1

‖un,i − xn‖2.
(2.14)

It follows from Eq.(2.14) that

‖xn+1 − x∗‖2 = ‖αn(xn − x∗) + (1− αn)(Wnyn −Wnx
∗)‖2

≤ αn‖xn − x∗‖2 + (1− αn){‖(I − βnA)(θn − x∗)
+βn(γf(θn)− Ax∗)‖2}

≤ αn‖xn − x∗‖2 + (1− αn){(1− βn$)‖θn − x∗‖2

+βn‖γf(θn)− Ax∗)‖2}
≤ αn‖xn − x∗‖2 + (1− αn)‖θn − x∗‖2

+βn‖γf(θn)− Ax∗)‖2

≤ αn‖xn − x∗‖2 + (1− αn){‖xn − x∗‖2

−1

k

k∑
i=1

‖un,i − xn‖2}

+βn‖γf(θn)− Ax∗)‖2

≤ ‖xn − x∗‖2 − (1− αn)
1

k

k∑
i=1

‖un,i − xn‖2

+βn‖γf(θn)− Ax∗)‖2.

Thanks to the conditions of (C1)- (C4) and Eq.(2.13), we conclude that

(1− αn)
1

k

k∑
i=1

‖un,i − xn‖2≤‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+βn‖γf(θn)− Ax∗)‖2

≤‖xn+1 − xn‖(‖xn+1 − x∗‖+ ‖xn − x∗‖)
+βn‖γf(θn)− Ax∗)‖2

lim
n→∞
‖un,i − xn‖ = 0, for each i = 1, 2, . . . , k
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also

lim
n→∞
‖θn − xn‖ = lim

n→∞
‖un,i − xn‖ = 0 (2.15)

‖yn − θn‖ = βn‖γf(θn)− Aθn‖ → 0 as n→∞. (2.16)

Moreover, we know that

‖yn − xn‖ ≤ ‖xn − θn‖+ ‖θn − yn‖

‖Wnyn − yn‖ ≤ ‖Wnyn − xn‖+ ‖xn − θn‖+ ‖θn − yn‖.
In viwe of Eq.(2.12), Eq.(2.15) and Eq.(2.16) , we can obtain

lim
n→∞
‖yn − xn‖ = 0 (2.17)

lim
n→∞
‖Wnyn − yn‖ = 0. (2.18)

2

Theorem 2.2 Suppose all assumptions of Theorem 2.1 are holds. Then
the sequence {xn} converge strongly to x̃, which solves the variational
inequality

〈(A− γf)x̃, x̃− xn〉 ≤ 0, x̃ ∈
k⋂
i=1

F (W )
⋂
EP (Gi).

Equivalently, P⋂k

i=1
F (W )

⋂
EP (Gi)

(I − A− γf)(x̃) = x̃.

Proof. We shall prove that

lim sup
n→∞

〈(A− γf)x∗, yn − x∗〉 ≤ 0,
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where x∗ = P⋂k

i=1
F (W )

⋂
EP (Gi)

f(x∗).

We choose a subsequence {ynp} of {yn} such that

lim sup
n→∞

〈(A− γf)x∗, yn − x∗〉 = lim
p→∞
〈(A− γf)x∗, ynp − x∗〉, (2.19)

since {ynp} is bounded, there exits a subsequence of {ynp}, we denote it
by {ynp} such that ynp ⇀ q, q ∈ C.

We shall show that q ∈ ⋂k
i=1 F (W )

⋂
EP (Gi). On the contrary, suppose

that q /∈ F (W ). By Opial’s condition

lim inf
p→∞

‖ynp − q‖< lim inf
p→∞

‖ynp −Wq‖

≤ lim inf
p→∞

{‖ynp −Wynp‖+ ‖Wynp −Wq‖}

≤ lim inf
p→∞

{‖ynp −Wynp‖+ ‖ynp − q‖}.

By virtue of Lemma 1.4 and noticing Eq.(2.18)

lim
p→∞
‖Wynp − ynp‖≤ lim

p→∞
{‖Wynp −Wnpynp‖+ ‖Wnpynp − ynp‖}

≤ lim
p→∞
{Sup x∈C ‖Wx−Wnpx‖}

+ lim
p→∞
‖Wnpynp − ynp‖ = 0.

It follows that

lim inf
p→∞

‖ynp − q‖ < lim inf
p→∞

‖ynp − q‖.

This is a contradiction. Therefore, we have q ∈ F (W ). Also, we prove
q ∈ ⋂k

i=1EP (Gi).
For each i ∈ J = {1, 2, . . . , k}, since Gi(unp , y) + 1

rnp
〈y, unp − xnp〉 ≥ 0,
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from (A2), we see that

1
rnp
〈y − unp , unp − xnp〉 ≥ Gi(unp , y) +Gi(y, unp)

+ 1
rnp
〈y − unp , unp − xnp〉

≥ Gi(y, unp),

hence

〈y − unp ,
unp − xnp

rnp

〉 ≥ Gi(y, unp), for all y ∈ C.

Since
|unp−xnp |

rnp
→ 0, un,i ⇀ q, in viwe of (A4), we conclude

Gi(y, q) ≤ 0, textbfforally ∈ C.

Let 0 < t ≤ 1, y ∈ C and yt = ty+ (1− t)q. It is clear that Gi(yt, q) ≤ 0.
From (A1)-(A4), we obtai

0 = Gi(yt, yt) ≤ tGi(yt, y) + (1− t)Gi(yt, q) ≤ tGi(yt, y), Gi(y, q) ≥ 0,

textbfforally ∈ C.

Thus q ∈ ⋂k
i=1EP (Gi).

From Eq.(2.19), we have

lim sup
n→∞

〈(A− γf)x∗, yn − x∗〉= lim
p→∞
〈(A− γf)x∗, ynp − x∗〉

= 〈(A− γf)x∗, x∗ − q〉 ≤ 0.

It follows from Eq.(2.17) and Eq.(2.19) that

lim sup
n→∞

〈(A− γf)x∗, x∗ − xn〉 ≤ lim sup
n→∞

〈(A− γf)x∗, yn − xn〉

+lim sup
n→∞

〈(A− γf)x∗, x∗ − yn〉 ≤ 0.

Finally, we prove that xn → q where x∗ = P⋂k

i=1
F (W )

⋂
EP (Gi)

f(x∗).

By virtue of Lemma 1.7
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‖yn − x∗‖2 = ‖(I − βnA)(θn − x∗) + βn(γf(θn)− Ax∗)‖2

≤ ‖(I − βnA)(θn − x∗)‖2 + 2βn〈γf(θn)− Ax∗, yn − x∗〉
≤ ‖(I − βnA)(θn − x∗)‖2

+2βnγρ‖xn − x∗‖‖yn − x∗‖+ 2βn〈γf(θn)− Ax∗, yn − x∗〉
≤ (1− βn$)2‖xn − x∗‖2 + βnγρ(‖xn − x∗‖2 + ‖yn − x∗‖2)

+2βn〈γf(x∗)− Ax∗, yn − x∗〉.

from which it follows that

‖yn − x∗‖2 ≤
(1− βn$)2 + βnγρ

1− βnγρ
‖xn − x∗‖2

+
2βn

1− βnγρ
〈γf(x∗)− Ax∗, yn − x∗〉

≤ {1− 2βn($ − γρ)

1− βnργ
}‖xn − x∗‖2

+
2βn($ − γρ)

1− βnγρ
{ 1

$ − γρ
〈γf(x∗)− Ax∗, yn − x∗〉

+
βn$

2

2($ − γρ)
L},

where L = Sup{‖xn − x∗‖}.
Also

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1− αn)‖yn − x∗‖2 (2.20)

it follows from Eq.(2.20) that

‖xn+1 − x∗‖2 ≤ {1− (1− αn)
2βn($ − γρ)

1− βnργ
}‖xn − x∗‖2

+(1− αn)
2βn($ − γρ)

1− βnργ
}{ 1

$ − γρ
〈γf(x∗)− Ax∗, yn − x∗〉

+
βn$

2

2($ − γρ)
L}.
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Let ξn := (1− αn)2βn($−γρ)
1−βnργ and

εn :=
1

$ − γρ
〈γf(x∗)− Ax∗, yn − x∗〉+

βn$
2

2($ − γρ)
L.

Therefore,

‖xn+1 − x∗‖2 ≤ (1− ξn)‖xn − x∗‖2 + ξnεn. (2.21)

Thanks to the condition (C1) and Eq.(2.21), we conclude that

lim
n→∞

ξn = 0,
∞∑
n=1

ξn =∞.

From Lemma 1.10 we can obtain xn → x∗. 2

3 Numerical Example

In this section, we get one example is presented to guarantee the Theorem
(2.2).

Example 3.1 Let H = R, C = [−1, 1] and G1(x, y) = −3x2 + xy +
2y2, G2(x, y) = −4x2 + xy + 3y2 and G3(x, y) = −9x2 + xy + 8y2. Also,
we consider Sn = I, f(x) = x

5
and A = I be a strongly positive linear

bounded operator with coefficient γ = 1. It is easy to check that A and f
satisfy all conditions in Theorem 2.2. For each r > 0 and x ∈ C, there
exists z ∈ C such that, for any y ∈ C,

G(z, y) +
1

r
〈y − z, z − x〉 ≥ 0

⇔−3z2 + zy + 2y2 +
1

r
(y − z)(z − x) ≥ 0

⇔ 2ry2 + ((r + 1)z − x)y − 3rz2 − z2 + zx ≥ 0
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Set G(y) = 2ry2 + ((r + 1)z − x)y − 3rz2 − z2 + zx. Then G(y) is a
quadratic function of y with coefficients a = 2r, b = (r + 1)z − x and
c = −3rz2 − z2 + zx. So

∆ = [(r + 1)z − x]2 − 8r(zx− z2 − 3rz2)

= (r + 1)2z2 − 2(r + 1)xz + x2 + 24r2z2 + 8rz2 − 8rzx

=x2 − 2(5rz + z)x+ (25r2z2 + 10rz2 + z2)

= [(x− (5rz + z))]2.

Since G(y) ≥ 0 for all y ∈ C, if and only if ∆ = [(x− (5rz + z))]2 ≤ 0.
Therefore, z = x

5r+1
, which yields Trn,1 = u(1)n = xn

5rn+1
.

By the same argument, for G2 and G3, one can conclude Trn,2 = u(2)n
xn

7rn+1

and Trn,3 = u(3)n = xn
17rn+1

. Let rn = n
n+1

. Hence

θn =
u(1)n + u(2)n + u(3)n

3
=

1

3

280n3 + 344n2 + 67n+ 3

864n3 + 300n2 + 32n+ 1
xn.

Suppose that αn = 2n−1
10n−9 , βn = 1

n
and λn = ε, we have

W1 =U11 = λ1S1U12 + (1− λ1)I,
W2 =U21 = λ1S1U22 + (1− λ1)I

=λ1S1{λ2S2U23 + (1− λ2)I}+ (1− λ1)I,
=λ1λ2S1S2 + λ1(1− λ2)S1 + (1− λ1)I,

W3 =U31 = λ1S1U32 + (1− λ1)I
=λ1S1{λ2S2U33 + (1− λ2)I}+ (1− λ1)I,
=λ1λ2S1S2U33 + λ1(1− λ2)S1 + (1− λ1)I,
=λ1λ2S1S2{λ33S3U34 + (1− λ3)I}+ λ1(1− λ2)S1 + (1− λ1)I,
=λ1λ2λ3S1S2S3 + λ1λ2(1− λ3)S1S2 + λ1(1− λ2)S1 + (1− λ1)I.

By iteration this manner, we have

Wn = Un1 = λ1λ2 · · ·λnS1S2 · · ·Sn + λ1λ2 · · ·λn−1(1− λn)S1S2 · · ·Sn−1
+λ1λ2 · · ·λn−2(1− λn−1)S1S2 · · ·Sn−2 + · · ·+ λ1(1− λ2)S1 + (1− λ1I.

Let Tn = I, λn = ε, we obtain
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Wn = [εn + εn−1(1− ε) + · · ·+ ε(1− ε) + (1− ε)]I = I.

Hence

yn = (
280n3 + 344n2 + 67n+ 3

864n3 + 300n2 + 32n+ 1
)(

15n− 14

15n
)xn.

We have the following algorithm for the sequence {xn}

xn+1 =
2n− 1

10n− 9
xn +

8n− 8

10n− 9
yn.

Choose x1 = 1. By using MATLAB software, we obtain the following
table and figure of the result.

n xn n xn n xn

1 1.0 11 0.003385691332 21 0.000002071711754

2 1.270565302 12 0.001637456001 22 0.0000009778618741

3 0.7706281483 13 0.0007885980277 23 0.0000004609899888

4 0.4251825949 14 0.0003784282172 24 0.0000002170787103

5 0.2242603285 15 0.0001810390789 25 0.0000001021162838

6 0.1151384546 16 0.00008637699279 26 0.00000004799105366

7 0.05805496956 17 0.00004111536174 27 0.00000002253432275

8 0.02889456779 18 0.00001953029496 28 0.00000001057245007

9 0.01424086637 19 0.000009260000453 29 0.000000004956540717

10 0.006965124578 20 0.000004383229046 30 0.000000002322073954
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Fig. 1. The graph of {xn} with initial value x1 = 1.
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