تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,621 |
تعداد مشاهده مقاله | 78,331,140 |
تعداد دریافت فایل اصل مقاله | 55,377,551 |
Displacement Field Due to a Cylindrical Inclusion in a Thermoelastic Half-Space | ||
Journal of Solid Mechanics | ||
مقاله 1، دوره 9، شماره 3، آذر 2017، صفحه 445-455 اصل مقاله (599.04 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
K Singh؛ M Renu* | ||
Department of Mathematics,Guru Jambheshwar ,University of Science & Technology, Hisar, Pin-125001, Haryana, India | ||
چکیده | ||
In this paper, the closed form analytical expressions for the displacement field due to a cylindrical inclusion in a thermoelastic half-space are obtained. These expressions are derived in the context of steady-state uncoupled thermoelasticity using thermoelastic displacement potential functions. The thermal displacement field is generated due to differences in the coefficients of linear thermal expansion between a subregion and the surrounding material. Further, comparison between displacement field in a half-space and in an infinite medium has been discussed. The variation of displacement field in a half-space and its comparison with an infinite medium is also shown graphically. | ||
کلیدواژهها | ||
Displacement field؛ Thermoelastic half-space؛ Potential functions؛ Cylindrical inclusion, Uncoupled thermoelasticity | ||
مراجع | ||
[1] Goodier J.N., 1937, On the integration of the thermoelastic equations, Philosophical Magazine 7(23):1017-1032. [2] Mindlin R.D., Cheng, D.H., 1950, Thermoelastic stress in the semi-infinite solid, Journal of Applied Physics 21: 931-933. [3] Yu H.Y., Sanday S.C., 1992, Centre of dilatation and thermal stresses in an elastic plate, Proceedings of the Royal Society of London A 438: 103-112. [4] Hemayati M., Karami G., 2002, A boundary elements and particular integrals implementation for thermoelastic stress analysis, International Journal of Engineering Transactions A: Basics 15(2): 197-204. [5] Nowinski J., 1961, Biharmonic solutions to the steady-state thermoelastic problems in three dimensions, Zeitschrift für Angewandte Mathematik und Physik ZAMP 12(2): 132-149. [6] Wang M., Huang, K., 1991, Thermoelastic problems in the half space-An application of the general solution in elasticity, Applied Mathematics and Mechanics 12(9): 849-861. [7] Seremet V., Bonnet G., Speianu T.,2009, New Poisson’s type integral formula for thermoelastic half-space, Hindawi Publishing Corporation, Mathematical Problems in Engineering 2009: 284380. [8] Kedar G.D., Warbhe S.D., Deshmukh K.C., Kulkarni V.S., 2012,Thermal stresses in a semi-infinite solid circular cylinder, International Journal of Applied Mathematics and Mechanics 8(10): 38-46. [9] Davies J.H., 2003, Elastic field in a semi-infinite solid due to thermal expansion or a coherently misfitting inclusion, Journal of Applied Mechanics 70(5): 655-660. [10] Sen B., 1957, Note on a direct method of solving problems of elastic plates with circular boundaries having prescribed displacement, Zeitschrift für angewandte Mathematik und Physik ZAMP 8(4): 307-309. [11] Arpaci V.S., 1984, Steady axially symmetric three-dimensional thermoelastic stresses in fuel roads, Nuclear Engineering and Design 80: 301-307. [12] Rokne J., Singh B.M., Dhaliwal R.S., Vrbik J., 2003,The axisymmetric boussinesq-type problem for a half-space under optimal heating of arbitrary profile, International Journal of Mathematics and Mathematical Sciences 40: 2123-2131. [13] Chao C.K., Chen F.M., Shen M.H., 2006, Green’s functions for a point heat source in circularly cylindrical layered media, Journal of Thermal Stresses 29(9): 809-847. [14] Sadd M.H., 2005, Elasticity-Theory, Applications and Numerics, Elsevier Academic Press Inc., UK. [15] Timoshenko S., Goodier J.N., 1951, Theory of Elasticity, McGraw-Hill, New York. | ||
آمار تعداد مشاهده مقاله: 503 تعداد دریافت فایل اصل مقاله: 551 |