
 

 

  
Computation and Simulation in Mechanical Sciences (CSMech) 

 

Elastoplastic dynamic buckling of rectangular plates subjected 
to impulsive loading with various boundary conditions using 
deformation and incremental theory of plasticity 

H. Ramezannezhad Azarboni 

M. Darvizeh 
 

ORIGINAL 

         PAPER 

Volume: 01 

Issue: 01 

Winter 2018 

Page: 29-41 

ISSN: 

eISSN: 

 
www.csmech.iaubanz.ac.ir 

Open 
Access 

 



 
 

 
29 

 29 
 

 

www.csmech.iaubanz.ac.ir 

ORIGINAL 

         PAPER Computations and Simulations in 

Mechanical Science 

CSMech. 01(01), 29-41, (2018)  

*Corresponding author: Tel/Fax: +98 1155260531 
E-mail address: h.ramezannejad@iauramsar.ac.ir 

Elastoplastic dynamic buckling of rectangular plates 

subjected to impulsive loading with various boundary 

conditions using deformation and incremental theory of 

plasticity 

H. Ramezannezhad Azarboni a,*, M. Darvizehb 

a Department of Mechanical Engineering, Ramsar branch, Islamic Azad University, Ramsar, Iran 
b Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran  

Abstract 

The elastoplastic dynamic buckling of a thin rectangular plate with different boundary 

conditions subjected to uni- and biaxial compression sinusoidal pulse functions is 

investigated employing Galerkin method on the basis of trigonometric mode shape 

functions. The equilibrium, stability and dynamic elastoplastic buckling equations are 

derived based on two theories of plasticity: deformation theory of plasticity (DT) with 

Hencky constitutive relations and incremental theory of plasticity (IT) with Prandtl-

Reuss constitutive relations. Ramberg-Osgood stress-strain model is used to describe 

the elastoplastic material property of plate. The effects of boundary conditions, force 

pulse amplitude, loading ratio and type of plasticity theory on the velocity and 

deflection histories of plate are investigated. According to the dynamic response of 

plate, the results obtained from DT are lower than those predicted through IT and the 

boundary conditions of rectangular plate subjected to impulsive load have a 

significant influence on the dynamic response of palte. The resistance against 

deformation for corresponding to plates with clamped boundary condition is more 

than those plates with simply supported boundary condition. 
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1. Introduction 

Nowadays, availability, durability, reliability, 
weight and strength, as the most important 
factors in optimum engineering design, are 
responsible for the widespread applications of 
plates in industry. In order to achieve an 
optimal design, mechanical properties and 
behavior of such structures in the presence of 
different loading conditions should be carefully 
investigated. Three types of loads, including 
lateral, axial and combined axial and lateral, 
can be applied to a plate. Due to the importance 
of buckling phenomena in the optimum design 
of plate, extensive buckling analysis has been 
carried out in elastic or elastoplastic regime. 
These researches can be classified into two 
main categories, i.e. static buckling and 
dynamic buckling [1-34]. Many investigations 
were carried out in order to analyze the 
elastoplastic buckling of plates through 

plasticity theories, i.e. DT and IT. Comparison 
between experimental and analytical results 
indicates that DT and IT were applicable in 
plastic buckling problems. According to these 
researches, in the case of cylinders subjected to 
torsional or compressive loads, IT provides 
more accurate results compared to those of DT, 
while in long simply supported plates DT 
predicts better load buckling than IT. For 
example, the inelastic buckling of infinitely long 
square simply supported plates, and 
considering the effects of transverse shear and 
employing both DT and IT was studied by 
Shrivastava [10]. Ore and Durban [11] perused 
the linear elastoplastic buckling of the annular 
plate under shear loads with both DT and IT. 
Application of both theories of plasticity in 
elastoplastic buckling of rectangular plate 
subjected to uniform compression combined 
with uniform tension (or compression) in the 
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perpendicular direction with various types of 
boundary conditions was studied by Durban 
and Zuckerman [12]. They found out that in the 
case of thin plates, DT and IT have the same 
results, whereas for thicker plates, DT predicts 
more accurate response compared to IT. 
According to the published literature, the 
studies on the buckling behavior of plates have 
been limited to static ones in the case of 
elastoplastic rectangular plates. Also, 
considering the dynamic buckling behavior, it 
can be observed that narrow investigations 
have been carried out in elastic regime [13-15]. 
Moreover, the effects of Ramberg-Osgood 
coefficient, geometric parameters and 
boundary conditions on the critical buckling 
load were explored in the case of thick 
rectangular and circular elastoplastic plates 
throughout DT and IT by Chakrabarty et al. 
[16]. They reported that by increasing the 
thickness of plates, 𝐸 𝜎0⁄  and c values of 
Ramberg-Osgood relation, the divergence of 
estimated values obtained by both theories 
increases. Considering the wave propagation, 
the effect of the impact velocity and striking 
mass on the development of buckling shape on 
the dynamic elastic plastic buckling of thin-
walled square tubes was investigated by 
Karagiozova and Jones [17]. Using the semi-
analytical complex finite strip method, the 
inelastic local buckling of flat plate structures 
that contain plates with variable thicknesses 
was studied by azhari et al. [18]. Considering 
DT and IT, Wang et al. [19-20] discussed the 
effect of Ramberg-Osgood coefficient, 
geometric parameters and boundary 
conditions on the plastic buckling in the case of 
thick rectangular and circular elastoplastic 
plates. Lotfi et al. [21] investigated the skew 
isotropic plates subjected to in-plane loadings 
employing the stability analysis based on the 
isoparametric spline finite strip method, which 
includes inelasticity. The elastoplastic buckling 
investigation of simply supported square and 
rectangular thin steel plates having elliptic cut-
outs using finite element methods were 
worked by Komur [22]. Inelastic stress 
distributions, load transfers and failure modes 
for a range of size and spacing by using inelastic 
large displacement isoparametric spline finite 
strip method were investigated by Yao and 
Rasmussen [23]. Tang and Li [24] 
experimentally studied the axial dynamic 
buckling responses of pseudo-elastic NiTi alloy 

cylindrical shells for various lengths/diameter 
ratios and end constraint conditions by using a 
modified single pulse SHPB apparatus. The 
axisymmetrical buckling and non-
axisymmetric buckling modes were discussed. 
Fyllingen et al. [25] studied on the transition 
from progressive buckling to global bending 
during axial crushing of long square tubes 
experimentally. The propagation of buckling at 
the end of the tube and observation of 
deformation modes were discussed. By 
applying the numerical nonlinear finite 
element method and theoretical p-Ritz energy 
method the inelastic buckling and postbuckling 
behavior of stocky plates under combined 
shear and in-plane bending stresses were 
developed and compared to slender plates by 
Alinia et al. [26]. Douville and Grognec [27] 
carried out the elastic buckling analyses of 
classical sandwich beam-columns in order to 
derive the critical values and the associated 
bifurcation modes under various loadings 
analytically. Using the generalized differential 
quadrature (GDQ) discretization technique in 
DT and IT, the elastoplastic buckling of a thin 
rectangular plate with various boundary 
conditions was investigated by Kadkhodayan 
and Maarefdoust [28-29]. The difference 
between the results obtained by these two 
theories and the effects of the geometrical 
parameters and boundary conditions were 
discussed. Considering the incremental theory 
of plasticity and the deformation theory of 
plasticity, the plastic buckling of circular 
cylindrical shells under axial compression was 
investigated by shamass et al. [30]. Trybula and 
Krzelecki [31] discussed the modification of 
postbuckling path concept by application of 
additional loadings acting on the structure 
without changing the shape or sizes of the 
optimized element. ANSYS code was used for 
calculations of elastic–plastic shells of 
geometry and loading. Gumruk [32] studied the 
dynamic plastic buckling behavior of an 
aluminum alloy cylindrical shell with an axial 
linear variable thickness, discontinuity and 
conical shaped for high velocity impact using 
finite element method. Picandet et al. [33] 
carried out the buckling and postbuckling of a 
perfect axially loaded column analytically 
through a global bilinear moment-curvature 
elastoplastic constitutive law. Elastoplastic 
dynamic buckling analysis of rectangular plate 
subjected to impulsive loading with different 

http://www.sciencedirect.com/science/article/pii/S0093641311000036
http://www.sciencedirect.com/science/article/pii/S0263823113003303
http://www.sciencedirect.com/science/article/pii/S0263823113003303
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boundary conditions leads to complex coupled 
equations to solve. For this reason, the 
elastoplastic buckling analysis of rectangular 
plates is limited to derive the critical buckling 
load and very limited dynamic buckling 
analyses have been performed so far for the 
rectangular plates .Employing DT and IT for 
dynamic buckling behavior analysis of 
elastoplastic rectangular plate subjected to uni- 
and biaxial compressive sinusoidal pulse 
function by applying Galerkin method along 
with the trigonometric shape functions for 
different boundary conditions is the innovation 
of this paper. To this end, initially, by using DT 
with the Hencky constitutive relations and IT 
with the Prandtl-Reuss constitutive relations, 
the equilibrium, stability and dynamic 
elastoplastic buckling equations for 
rectangular plate are derived. Then, the 
Ramberg-Osgood stress-strain model is 
selected to describe the elastoplastic material 
property of plate. Finally, the effects of 
different boundary conditions, force pulse 
amplitude, geometrical parameter and type of 
plasticity theory on the velocity and deflection 
histories of plate are investigated. 

2. Governing equations 
Considering the Mindlin theory of plate, the 
admissible field velocity can be written as [34] 

𝑣𝑥 = 𝑢̇ − 𝑧
𝜕𝑤̇

𝜕𝑥
 (1a) 

𝑣𝑦 = 𝑣̇ − 𝑧
𝜕𝑤̇

𝜕𝑦
 (1b) 

𝑣𝑧 = 𝑤̇ (1c) 
where  𝑢, 𝑣  and 𝑤  represent the deflection of 
the middle surface of plate about the 𝑥, 𝑦and 𝑧 
directions, respectively. According to field 
velocity, the strain rates are given by  

𝜀𝑥̇𝑥 =
𝜕𝑢̇

𝜕𝑥
− 𝑧

𝜕2𝑤̇

𝜕𝑥2  (2a) 

𝜀𝑦̇𝑦 =
𝜕𝑣̇

𝜕𝑦
− 𝑧

𝜕2𝑤̇

𝜕𝑦2  (2b) 

𝜀𝑥̇𝑥 =
1

2
(

𝜕𝑢̇

𝜕𝑦
+

𝜕𝑣̇

𝜕𝑥
) − 2𝑧

𝜕2𝑤̇

𝜕𝑥𝜕𝑦
 (2c) 

2.1. Deformation theory (DT) based on 
Hencky equation 
The Hencky equation for plastic strain is given 
as follows [34] 

𝜀𝑖𝑗
𝑝

=
3𝜀̅𝑝

2𝜎̅
𝑆𝑖𝑗 (3) 

where 𝜀̅𝑝, 𝜎̅  and 𝑆𝑖𝑗  are the effective plastic 

strain, effective stress and deviatoric stress 
vector, respectively. The rate of plastic strain 

equation in the incremental form is obtained by 
differentiating of Eq. (3) with respect to time 
as. 

𝑑𝜀𝑖𝑗
𝑝

=
3𝑑𝜎̅

2𝜎̅
(

𝑑𝜀̅𝑝

𝑑𝜎̅
−

𝜀̅𝑝

𝜎̅
) 𝑆𝑖𝑗 +

3𝜀̅𝑝

2𝜎̅
𝑑𝑆𝑖𝑗  (4) 

where 𝑑𝑆𝑖𝑗  represents the time increment of 

the deviatoric stress vector. Based on Hook's 
law, the strain-stress relation for elastic 
deformation can be written in tensorial 
notation by Eq. (5) 

𝜀𝑖𝑗
𝑒 =

1+𝜈

𝐸
𝑆𝑖𝑗 +

1−2𝜈

3𝐸
𝛿𝑖𝑗𝜎𝑘𝑘 (5) 

The incremental form of Eq. (5) is derived as 

𝑑𝜀𝑖𝑗
𝑒 =

1+𝜈

𝐸
𝑑𝑆𝑖𝑗 +

1−2𝜈

3𝐸
𝛿𝑖𝑗𝑑𝜎𝑘𝑘 (6) 

where  𝜈  is the Poisson's ratio, 𝐸 denotes the 
young's module and 𝛿𝑖𝑗 expresses the 

Kronecker delta. The complete elastic-plastic 
stress-strain relation is obtained by 
combination of Eqs. (4) and (6)  

𝐸𝜀𝑖̇𝑗 = (
3𝐸

2𝐸𝑠
−

1−2𝜈

2
) 𝑆̇𝑖𝑗 + (

1−2𝜈

3
) 𝜎̇𝑘𝑘𝛿𝑖𝑗 +

3𝜎̇̅

2𝜎̅
(

𝐸

𝐸𝑡
−

𝐸

𝐸𝑠
) 𝑆𝑖𝑗 (7) 

In Eq. (7), 𝐸𝑡 =
𝑑𝜎̅

𝑑𝜀̅
 and 𝐸𝑠 =

𝜎̅

𝜀̅
 indicate the 

tangent and secant module, respectively where 
𝜀̅ is the total effective strain. Consider a thin 
rectangular plate with length a, width b, 
uniform thickness h and exposed uniform axial 
compressive stress 𝜎 . According to the Von-
Mises yield criterion, the effective stress is 
defined as 

𝜎̅ = √𝜎𝑥
2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦

2 + 3𝜎𝑥𝑦
2  (8) 

By applying the straightforward differentiation 
to Eq. (8) and substituting the principle stress, 
the following equation can be derived. 

𝜎̇̅

𝜎̅
= −

(2𝜎1−𝜎2)𝜎̇𝑥+(2𝜎2−𝜎1)𝜎̇𝑦

2𝜎̅2  (9) 

Substituting Eq. (9) into Eq. (7) and then 
extending in the Cartesian coordinate for 
isotropic materials, the strain rate relation in 
terms of stress rate can be derived. 

𝐸𝑡𝜀𝑥̇ = [1 −
3

4
(1 −

𝐸𝑡

𝐸𝑠
)

𝜎2
2

𝜎̅2
] 𝜎̇𝑥

− [𝜗 −
3

4
(1 −

𝐸𝑡

𝐸𝑠
)

𝜎1𝜎2

𝜎̅2 ] 𝜎̇𝑦 

(10a) 
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𝐸𝑡𝜀𝑦̇ = [1 −
3

4
(1 −

𝐸𝑡

𝐸𝑠
)

𝜎1
2

𝜎̅2
] 𝜎̇𝑦

− [𝜗 −
3

4
(1 −

𝐸𝑡

𝐸𝑠
)

𝜎1𝜎2

𝜎̅2 ] 𝜎̇𝑥 

(10b) 
where  𝜗  is the contraction ratio and can be 
expressed in terms of 𝜈, 𝐸 and 𝐸𝑡 by Eq. (11) 

𝜗 =
1

2
−

(1−2𝜈)𝐸𝑡

2𝐸
 (11) 

The stress rate-strain rate relation can be 
derived by inversion of Eqs. (10a) and (10b) 
asfollows [34] 

𝜎̇𝑥 = 𝐸[𝛼𝜀𝑥̇𝑥 + 𝛽𝜀𝑦̇𝑦] (12a) 

𝜎̇𝑦 = 𝐸[𝛽𝜀𝑥̇𝑥 + 𝛾𝜀𝑦̇𝑦] (12b) 

𝜎̇𝑥𝑦 = 2𝐺𝜀𝑥̇𝑦 (12c) 

where 

𝛼 =
1

𝜆
[4 − 3 (1 −

𝐸𝑡

𝐸𝑠
)

𝜎1
2

𝜎̅2] (13a) 

𝛽 =
1

𝜆
[2 − 2(1 − 2𝜈)

𝐸𝑡

𝐸
− 3 (1 −

𝐸𝑡

𝐸𝑠
)

𝜎1𝜎2

𝜎̅2 ] (13b) 

𝛾 =
1

𝜆
[4 − 3 (1 −

𝐸𝑡

𝐸𝑠
)

𝜎2
2

𝜎̅2] (13c) 

𝜆 =
3𝐸

𝐸𝑠
+ (1 − 2𝜈) [2 − (1 − 2𝜈)

𝐸𝑡

𝐸
− 3 (1 −

𝐸𝑡

𝐸𝑠
)

𝜎1𝜎2

𝜎̅2 ] (13d) 

𝐸

𝐺
= 2 + 2𝜈 + 3 (

𝐸

𝐸𝑠
− 1) (13e) 

By considering the effective stress in terms 
of 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑥𝑦 , the strain rate-stress rate 

relation can be written as [17] 

𝐸𝑡 {

𝜀𝑥̇𝑥

𝜀𝑦̇𝑦

𝜀𝑥̇𝑦

} = [𝐾] {

𝜎̇𝑥𝑥

𝜎̇𝑦𝑦

𝜎̇𝑥𝑦

} (14) 

where the matrix elements are given by 

𝑘11 = [1 − 3 (1 −
𝐸𝑡

𝐸𝑠
) (

𝜎𝑦
2

4𝜎̅2 +
𝜎𝑥𝑦

2

𝜎̅2 )] (15a) 

𝑘12 = 𝑘21 = −
1

2
[1 − (1 − 2𝜈)

𝐸𝑡

𝐸
− 3 (1 −

𝐸𝑡

𝐸𝑠
) (

𝜎𝑥𝜎𝑦

2𝜎̅2 +
𝜎𝑥𝑦

2

𝜎̅2 )] (15b) 

𝑘13 = 𝑘13 =
3

2
[(1 −

𝐸𝑡

𝐸𝑠
) (

2𝜎𝑥−𝜎𝑦

𝜎̅
) (

𝜎𝑥𝑦

𝜎̅
)] (15c) 

𝑘22 = [1 − 3 (1 −
𝐸𝑡

𝐸𝑠
) (

𝜎𝑥
2

4𝜎̅2 +
𝜎𝑥𝑦

2

𝜎̅2 )] (15d) 

𝑘23 = 𝑘32 =
3

2
[(1 −

𝐸𝑡

𝐸𝑠
) (

2𝜎𝑦−𝜎𝑥

𝜎̅
) (

𝜎𝑥𝑦

𝜎̅
)] (15e) 

𝑘33 =
3𝐸𝑡

𝐸𝑠
− (1 − 2𝜈)

𝐸𝑡

𝐸
+ 9 (1 −

𝐸𝑡

𝐸𝑠
) (

𝜎𝑥𝑦
2

𝜎̅2 ) (15f) 

The stress rate-strain rate relation can be 
derived by inversion of Eq. (14) 

𝐸 {

𝜎̇𝑥𝑥

𝜎̇𝑦𝑦

𝜎̇𝑥𝑦

} = [

𝛼 𝛽 𝜒
𝛽 𝛾 𝜇
𝜒 𝜇 𝛿

] {

𝜀𝑥̇𝑥

𝜀𝑦̇𝑦

𝜀𝑥̇𝑦

} (16) 

where 

𝛼 =
1

𝜆
[𝑘22𝑘33 − 𝑘23

2 ] (17a) 

𝛽 =
1

𝜆
[𝑘13𝑘23 − 𝑘12𝑘33] (17b) 

𝜒 =
1

𝜆
[𝑘12𝑘23 − 𝑘13𝑘22] (17c) 

𝛾 =
1

𝜆
[𝑘11𝑘33 − 𝑘13

2 ] (17d) 

𝜇 =
1

𝜆
[𝑘12𝑘13 − 𝑘11𝑘23] (17e) 

𝛿 =
1

𝜆
[𝑘11𝑘22 − 𝑘12

2 ] (17f) 

𝜆 =
𝐸

𝐸𝑡
|𝐾| (17g) 

2.2. Incremental theory (IT) based on 
Prandtl–Reuss equation 
The constitutive relations for material that 
obey from Von-Mises yield criterion and the 
associated Prandtl-Reuss flow rule can be 
obtained as [16] 

𝜀𝑖̇𝑗
𝑝

=
3𝜎̇̅

2𝜎̅
(

1

𝐸𝑡
−

1

𝐸
) (18) 

The complete elastic-plastic stress-strain 
relation is obtained by combination of Eqs. (5) 
and (14) as follows. 

𝐸𝜀𝑖̇𝑗 = (1 + 𝜈)𝑆̇𝑖𝑗 + (
1−2𝜈

3
) 𝜎̇𝑘𝑘𝛿𝑖𝑗 +

3𝜎̇̅

2𝜎̅
(

𝐸

𝐸𝑡
−

1) 𝑆𝑖𝑗 (19) 

According to deformation theory, the 
parameters in the stress rate to strain rate 
relations can be derived as [34]  

𝛼 =
1

𝜆
[4 − 3 (1 −

𝐸𝑡

𝐸
)

𝜎1
2

𝜎̅2] (20a) 

𝛽 =
1

𝜆
[2 − 2(1 − 2𝜈)

𝐸𝑡

𝐸
− 3 (1 −

𝐸𝑡

𝐸
)

𝜎1𝜎2

𝜎̅2 ] (20b) 

𝛾 =
1

𝜆
[4 − 3 (1 −

𝐸𝑡

𝐸
)

𝜎2
2

𝜎̅2] (20c) 

𝜆 = (5 − 4𝜈) + (1 − 2𝜈)2 𝐸𝑡

𝐸
− 3(1 − 2𝜈) (1 −

𝐸𝑡

𝐸
)

𝜎1𝜎2

𝜎̅2  (20d) 
𝐸

𝐺
= 2(1 + 𝜈) (20e) 

The strain rate - stress rate matrix element 
relation, by considering the incremental theory 
based on Prandtl–Reuss equation can be 
derived as [28, 29]  

𝑘11 = [1 − 3 (1 −
𝐸𝑡

𝐸
) (

𝜎𝑦
2

4𝜎̅2 +
𝜎𝑥𝑦

2

𝜎̅2 )] (21a) 
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𝑘12 = 𝑘21 = −
1

2
[1 − (1 − 2𝜈)

𝐸𝑡

𝐸
− 3 (1 −

𝐸𝑡

𝐸
) (

𝜎𝑥𝜎𝑦

2𝜎̅2 +
𝜎𝑥𝑦

2

𝜎̅2 )] (21b) 

𝑘13 = 𝑘13 =
3

2
[(1 −

𝐸𝑡

𝐸
) (

2𝜎𝑥−𝜎𝑦

𝜎̅
) (

𝜎𝑥𝑦

𝜎̅
)] (21c) 

𝑘22 = [1 − 3 (1 −
𝐸𝑡

𝐸
) (

𝜎𝑥
2

4𝜎̅2 +
𝜎𝑥𝑦

2

𝜎̅2 )] (21d) 

𝑘23 = 𝑘32 =
3

2
[(1 −

𝐸𝑡

𝐸
) (

2𝜎𝑦−𝜎𝑥

𝜎̅
) (

𝜎𝑥𝑦

𝜎̅
)] (21e) 

𝑘33 =
3𝐸𝑡

𝐸𝑠
− (1 − 2𝜈)

𝐸𝑡

𝐸
+ 9 (1 −

𝐸𝑡

𝐸
) (

𝜎𝑥𝑦
2

𝜎̅2 ) (21f) 

The Ramberg-Osgood stress-strain model is 
used to describe the elastoplastic material 
property of plate. The Ramberg-Osgood 
constitutive law is defined as 

𝜀 =
𝜎̅

𝐸
+ 𝑘 (

𝜎̅

𝐸
)

𝑐
 (22) 

where  𝜀, 𝜎̅, 𝑘, 𝑐 representthe total strain, 
equivalent stress and material parameters, 
respectively. According to Eq. (22) and 
considering the tangent and secant modulus 

which are respectively defined as 𝐸𝑡 =
𝑑𝜎̅

𝑑𝜀̅
 and 

𝐸𝑠 =
𝜎̅

𝜀̅
, these parameters are derived as follows 

[12] 

𝐸

𝐸𝑡
= 1 + 𝑐𝑘 (

𝜎̅

𝐸
)

𝑐−1
 (23) 

𝐸

𝐸𝑠
= 1 + 𝑘 (

𝜎̅

𝐸
)

𝑐−1

 

2.3 Governing equation elastic/plastic 
dynamic buckling of thin plate 
The strain energy for a rectangular plate is 
given by [16] 

𝑈𝑠 =
1

2
∫ 𝜎̇𝑖𝑗𝜀𝑖̇𝑗𝑑𝑉

=
1

2
∭(𝜎̇𝑥𝑥𝜀𝑥̇𝑥 + 𝜎̇𝑦𝑦𝜀𝑦̇𝑦

+ 𝜎̇𝑥𝑦𝜀𝑥̇𝑦)𝑑𝑥𝑑𝑦𝑑𝑧 

(24) 

Also, by neglecting the rotational inertia and 
assuming the transverse motion, the kinetic 
energy of the plate can be expressed as follows. 

𝐾𝑡 =
𝜌ℎ

2
∬ (

𝜕𝑤

𝜕𝑡
)

2
𝑑𝐴

𝐴
 (25) 

By considering the external uniform in-plane 
compressive and shear stress applied to plate, 
the potential energy can be written as follows. 

𝑊 = −
1

2
∭ 𝜎̇𝑥𝑥𝑤𝑥

2 +

𝜎̇𝑦𝑦𝑤𝑦+
2 2𝜎̇𝑥𝑦𝑤𝑥𝑤𝑦𝑑𝑥𝑑𝑦𝑑𝑧 (26) 

and then by applying the Hamilton principle as 
given below. 

𝛿 (∫ (𝐾𝑡 − 𝑈𝑠 + 𝑊)𝑑𝑡
𝑡1

𝑡0
) = 0 (27) 

By applying varaitional method the 
elastoplastic equation of motion for the lateral 
deflection can be derived. 

𝛼
𝜕4𝑤

𝜕𝑥4
+ 4𝜒

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝛽 + 2𝛿)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2

+ 4𝜇
𝜕4𝑤

𝜕𝑥𝜕𝑦3
+ 𝛾

𝜕4𝑤

𝜕𝑦4

+
12

ℎ2𝐸
(𝜎𝑥𝑥

𝜕2𝑤

𝜕𝑥2
+ 𝜎𝑦𝑦

𝜕2𝑤

𝜕𝑦2
 

       +2𝜎𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
) + 𝜌ℎ

𝜕2𝑤

𝜕𝑡2 = 0 (28) 

3. Solution methodology 
Three types of functions can be used to solve 
the nonlinear dynamic buckling problem of 
plate, i.e. admissible, comparison and eigen 
functions. Any arbitrary function that satisfies 
all the geometric boundary conditions of the 
eigenvalue problem which is R times 
differentiable over domain Scan be considered 
as the admissible function. Moreover, any 
arbitrary function that satisfies all the 
geometric and natural boundary conditions of 
the eigenvalue problem and is 2R times 
differentiable over domain S can be considered 
as the comparison functions. Eigen functions 
satisfy all the boundary conditions and the 
differential equation of the eigenvalue 
problem. In this study, to solve Eq. (28), the 
linear combinations of admissible functions in 
series form are employed. These functions can 
be used for geometric function,  𝑤(𝑥, 𝑦, 𝑡) . In 
general, these functions can be considered as 
follow 

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛(𝑡)𝛹𝑚(𝑥)𝛷𝑛(𝑦) (29) 

The Eq(29) satisfies all the geometric and 
natural boundary conditions. By substituting 
Eq.(29) into elastoplastic equation of motion 
for the lateral deflection, Eq. (28) can be 
rewritten as 

∑ ∑[𝛼𝑊𝑚𝑛(𝑡)
𝑑4𝛹𝑚(𝑥)

𝑑𝑥4
𝛷𝑛(𝑦)

+ 4𝜒𝑊𝑚𝑛(𝑡)
𝑑3𝛹𝑚(𝑥)

𝑑𝑥3

𝑑𝛷𝑛(𝑦)

𝑑𝑦
+2(𝛽

+ 2𝛿)𝑊𝑚𝑛(𝑡)
𝑑2𝛹𝑚(𝑥)

𝑑𝑥2
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𝑑2𝛷𝑛(𝑦)

𝑑𝑦2
+ 4𝜇𝑊𝑚𝑛(𝑡)

𝑑𝛹𝑚(𝑥)

𝑑𝑥

𝑑3𝛷𝑛(𝑦)

𝑑𝑦3

+ 𝛾𝑊𝑚𝑛(𝑡)𝛹𝑚(𝑥)
𝑑4𝛷𝑛(𝑦)

𝑑𝑦4

+
12

ℎ2𝐸
(𝜎𝑥𝑥𝑊𝑚𝑛(𝑡)𝛷𝑛(𝑦) 

𝑑2𝛹𝑚(𝑥)

𝑑𝑥2
+ 𝜎𝑦𝑦𝑊𝑚𝑛(𝑡)𝛹𝑚(𝑥)

𝑑2𝛷𝑛(𝑦)

𝑑𝑦2

+ 2𝜎𝑥𝑦𝑊𝑚𝑛(𝑡)
𝑑𝛹𝑚(𝑥)

𝑑𝑥

𝑑𝛷𝑛(𝑦)

𝑑𝑦
)

+ 𝜌ℎ
𝑑2𝑊𝑚𝑛(𝑡)

𝑑𝑡2
𝛹𝑚(𝑥) 

       𝛷𝑛(𝑦) = 0 (30) 
By substituting admissible functions of six 
different boundary conditions in the 
membrane force equation and multiplying 
achieved equation in 𝛹𝑟(𝑥)𝛷𝑠(𝑦)  and finally 
using Galerkin procedure over the plan area, a 
first-order ordinary differential equation is 
achieved as. 

∑ ∑ ∑ ∑{[𝛼𝛤𝑚𝑛𝑟𝑠
1 + 4𝜒𝛤𝑚𝑛𝑟𝑠

2

𝑁

𝑠=1

𝑀

𝑟=1

𝑁

𝑛=1

𝑀

𝑚=1

+ 2(𝛽 + 2𝛿)𝛤𝑚𝑛𝑟𝑠
3 + 4𝜇𝛤𝑚𝑛𝑟𝑠

4

+ 𝛾𝛤𝑚𝑛𝑟𝑠
5 +

12

ℎ2𝐸
(𝜎𝑥𝑥𝛤𝑚𝑛𝑟𝑠

6  

      +𝜎𝑦𝑦𝛤𝑚𝑛𝑟𝑠
7 + 2𝜎𝑥𝑦𝛤𝑚𝑛𝑟𝑠

8 )𝑊𝑚𝑛(𝑡)

+ 𝜌ℎ𝛤𝑚𝑛𝑟𝑠
9

𝑑2𝑊𝑚𝑛(𝑡)

𝑑𝑡2
 

(31) 
Where 

𝛤𝑚𝑛𝑟𝑠
1 = ∫ (𝛹𝑚

𝑥𝑥𝑥𝑥𝛹𝑟)
𝑎

0
𝑑𝑥 ∫ (𝛷𝑛𝛷𝑠)𝑑𝑦

𝑏

0
 (32a) 

𝛤𝑚𝑛𝑟𝑠
2 = ∫ (𝛹𝑚

𝑥𝑥𝑥𝛹𝑟)
𝑎

0
𝑑𝑥 ∫ (𝛷𝑛

𝑦
𝛷𝑠)𝑑𝑦

𝑏

0
 (32b) 

𝛤𝑚𝑛𝑟𝑠
3 = ∫ (𝛹𝑚

𝑥𝑥𝛹𝑟)
𝑎

0
𝑑𝑥 ∫ (𝛷𝑛

𝑦𝑦
𝛷𝑠)𝑑𝑦

𝑏

0
 (32c) 

𝛤𝑚𝑛𝑟𝑠
4 = ∫ (𝛹𝑚

𝑥𝛹𝑟)
𝑎

0
𝑑𝑥 ∫ (𝛷𝑛

𝑦𝑦𝑦
𝛷𝑠)𝑑𝑦

𝑏

0
 (32d) 

𝛤𝑚𝑛𝑟𝑠
5 = ∫ (𝛹𝑚𝛹𝑟)

𝑎

0
𝑑𝑥 ∫ (𝛷𝑛

𝑦𝑦𝑦𝑦
𝛷𝑠)𝑑𝑦

𝑏

0
 (32e) 

𝛤𝑚𝑛𝑟𝑠
6 = ∫ (𝛹𝑚

𝑥𝑥𝛹𝑟)
𝑎

0
𝑑𝑥 ∫ (𝛷𝑛𝛷𝑠)𝑑𝑦

𝑏

0
 (32f) 

𝛤𝑚𝑛𝑟𝑠
7 = ∫ (𝛹𝑚𝛹𝑟)

𝑎

0
𝑑𝑥 ∫ (𝛷𝑛

𝑦𝑦
𝛷𝑠)𝑑𝑦

𝑏

0
 (32g) 

𝛤𝑚𝑛𝑟𝑠
8 = ∫ (𝛹𝑚

𝑥𝛹𝑟)
𝑎

0
𝑑𝑥 ∫ (𝛷𝑛

𝑦
𝛷𝑠)𝑑𝑦

𝑏

0
 (32h) 

𝛤𝑚𝑛𝑟𝑠
9 = ∫ (𝛹𝑚𝛹𝑟)

𝑎

0
𝑑𝑥 ∫ (𝛷𝑛𝛷𝑠)𝑑𝑦

𝑏

0
 (32k) 

 

4. Results and discussion 
The elastoplastic dynamic buckling response of 
isotropic rectangular plate subjected to pulse 
load, 𝑃𝑥 , with six various types boundary 
conditions is presented. The pulse load 
includes sinusoidal and exponential impulse 
load that is presented in Table. 1, where,𝑇𝑠  is 

pulse or shock duration and 𝑃𝑥 is the amplitude 
of load.  
 

Table. 1. unidirectional pulse loading function. 
 

Loading type Function 

Sinusoidal 𝑃 = 𝑃𝑥𝑠𝑖𝑛 (
𝜋𝑡

𝑇𝑠

) (1 − 𝐻(𝑡 − 𝑇𝑠)) 

 

The regime of loading conditions can be 
determined by the value of shock duration 
which is dependent on/related to the 
fundamental flexural natural frequency of the 
plate. In the cases of impulsive pulse 
loading, 𝑇 ≪ 𝑇𝑏 2⁄  where𝑇𝑏 is the fundamental 
flexural natural frequency of the plate. Table. 2 
shows the trigonometric admissible functions 
for six different boundary conditions. 
In Table. 2, S and C represent the simply 
supported and clamped boundary conditions 
for rectangular plate, correspondingly. The 
material parameters of the plate are selected to 
be 𝐸 = 72.4𝐺𝑃𝑎 , 𝜈 = 0.32 and  𝜌 =
2700 𝐾𝑔 𝑚3⁄ . The area is   𝑎 × 𝑏 = 0.3 ×
0.3 𝑚2 , the thickness of ℎ = 0.005 𝑚  and the 
Ramberg-Osgood parameters are equal to 𝑘 =
3.94 × 1021, 𝑐 = 10.9 [28]. 
In order to compare the two theories, IT and 
DT, the maximum displacement and velocity 
are changed at the center of fully clamped 
square plate under uni-and biaxial sinusoidal 
impulse with respect to time.  
Two applied amplitudes of the uni-and biaxial 
loads are equal to 𝑃x = 540 Mpa, 𝑃x =
560 Mpa  and 𝑃x = 280 Mpa, 𝑃x = 270 Mpa , 
respectively. Variations of maximum 
displacement and velocity versus with the time 
of fully clamped plate under an impulsive 
sinusoidal pulse force for different values of 
loading amplitude by considering both theories 
of plasticity are shown in Fig. 1 and 2, 
respectively.  
Similar to static analysis, in the elastoplastic 
dynamic buckling analysis of plate, the results 
of DT are more accurate than those of IT. 
Results predicted by DT are in good agreement 
with those obtained of experimental ones [17].  
Also, Fig. 1 and 2 to shows that the maximum 
displacement under impulsive load is 
approximately obtained before the pulse is 
removed and remains constant both in uni- and 
biaxial impulsive loadings respectively.  
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Table. 2. Trigonometric admissible functions for six different boundary conditions. 
 

Boundary 

condition 
Function 

SSSS 𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 

CSSS 𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛𝑠𝑖𝑛 (
𝜋𝑥

2𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 

CCSS 𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛𝑠𝑖𝑛 (
𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 

CSCS 𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛𝑠𝑖𝑛 (
𝜋𝑥

2𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

2𝑏
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 

CCCS 𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛𝑠𝑖𝑛 (
𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

2𝑏
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 

CCCC 𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛𝑠𝑖𝑛 (
𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝜋𝑦

𝑏
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 

 

 
Fig. 1. Comparison of different plasticity theories 
for deflection history at the center of fully clamped 
square plate subjected to uniaxial different pulse 
amplitude 

 
Fig. 2. Comparison of different plasticity theories 
for deflection history at the center of fully clamped 
square plate subjected to biaxial different pulse 
amplitude 
 

As it can be seen in Fig. 3 to 4, the velocity at the 
center of the plate will be reached the 
maximum value, approximately, before the 
loading is released. Then, the plate returns to 
its static state. Moreover, in order to produce 
the same velocity and displacement in the 
biaxial loading, half of the amplitude of 
impulsive loads in uniaxial case is imposed. 

 
Fig. 3. Comparison of different plasticity theories 
for velocity history at the center of fully clamped 
square plate subjected to uniaxial different pulse 
amplitude 

 
Fig. 4. Comparison of different plasticity theories 
for velocity history at the center of fully clamped 
square plate subjected to biaxial different pulse 
amplitude 
 

The effect of different boundary conditions on 
the time history of maximum displacement and 
plate velocity is shown in Fig. 5 to 8. In order to 
apply the impulsive load, considering the 
different boundary conditions, the time 
duration is selected according to the 
fundamental flexural natural frequency of the 
plate. The minimum and maximum values of 
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fundamental flexural natural frequencies occur 
in the case of fully clamped and fully simply 
supported boundary conditions, respectively. 
So, the time duration of impulsive load for a 
plate with CCCC, CCCS, CSCS, CCSS, CSSS and 
SSSS has the lowest values respectively. As 
shown in Fig. 5 to 8, the maximum 
displacement and velocity occur approximately 
before time duration.  
 

 
Fig. 5. Effect of different boundary conditions on 
displacement history at the center of square plate 
subjected to uniaxial pulse load 
 

 
Fig. 6. Effect of different boundary conditions on 
displacement history at the center of square plate 
subjected to biaxial pulse load 

 

 
Fig. 7. Effect of different boundary conditions on 
velocity history at the center of square plate 
subjected to uniaxial pulse load 

 
Fig. 8. Effect of different boundary conditions on 
velocity history at the center of square plate 
subjected to biaxial pulse load 
 

The effects of the applied amplitude of uniaxial 
load on the maximum velocity of plate for 
various boundary conditions are presented in 
Fig. 9, in order to more precisely study, the 
velocity of plate is shown in the longitudinal 
direction from its center.  
Based on Fig. 9, decreasing the amplitude of 
applied load has leads to a reduction in the 
velocity of plate for all boundary conditions. 
Moreover, for symmetric boundary conditions 
such as CCCC, CCSS and SSSS boundary 
conditions, the velocity of plates along the x and 
y directions is symmetric, as demonstrated in 
Figs. 9(a), 9(b) and 9(c). While for asymmetric 
boundary conditions, the maximum velocity 
points of plate tend to edges that correspond to 
the simply supported boundary conditions. 
This means that the plate resistance against 
deformation with clamped boundary condition 
is more than that of plate with simply 
supported boundary condition. Consequently, 
the adjacent points to clamped boundary 
condition have a lower velocity field than those 
with simply supported boundary condition. 
This kind of asymmetry in the velocity field can 
be seen in the plates with CCCS, CSCS and CSSS 
boundary conditions which are shown in Figs 
5(d), 9(e) and 9(f).  
In the case of biaxial load, the velocity field of 
plate with symmetric boundary conditions and 
asymmetric boundary conditions are 
presented in Fig. 10 and 11. To clarify 
symmetric and asymmetric velocity field of 
plate with different boundary conditions, two-
dimensional images of plate are also presented. 
As shown in Fig. 10, both symmetric boundary 
conditions and loading conditions result in a 
symmetrical field of velocity for plates with 
CCCC, CCSS and SSSS boundary conditions. 
However, the asymmetric boundary conditions 
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with symmetric loading conditions lead to the 
asymmetric velocity field for the square plate 

with CCCS, CSCS and CSSS boundary conditions 
which can be seen in Fig. 11.

  

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 
Fig. 9. Maximum velocity field of square plate subjected to uniaxial different pulse amplitude 
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Fig. 10. Maximum velocity field of square plate with symmetric boundary conditions subjected to 
biaxial different pulse amplitude 
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Fig. 11. Maximum velocity field of square plate with asymmetric boundary conditions subjected to biaxial 
different pulse amplitude. 
 

 
Fig. 12. Effect of loading ratio on maximum velocity field of square plate subjected to pulse amplitude 

 

 
 

Finally, the effect of loading ratio, i.e. 𝜉 = 1, 𝜉 =
0.95, 𝜉 = 0.9 , on the velocity field of fully 
clamped square plate under sinusoidal 
impulsive load is depicted in Fig. 12. According 
to Fig. 12, it can be concluded that decreasing 
the aspect ratio leads to reducing of the velocity 
field, as the impulsive load with similar 
amplitude is applied.  

5. Coclusion 
This paper was aimed at analyzing the 
elastoplastic dynamic buckling of a rectangular 
plate exposed to uni- and biaxial compression 
sinusoidal pulse functions using Galerkin 
method and applying trigonometric mod shape 
functions. For this purpose, first of all, using 
deformation theory of plasticity (DT) with the 
Hencky constitutive relations and incremental 
theory of plasticity (IT) with the Prandtl-Reuss 
constitutive relations, the equilibrium, stability 
and dynamic elastoplastic buckling equations 
for rectangular plate were derived. The 
Ramberg-Osgood stress-strain model was used 
to describe the elastoplastic material property 

of plate. The effects of boundary conditions, 
force pulse amplitude, load and type of 
plasticity theory on the velocity and deflection 
histories of plate were investigated. According 
to the dynamic response of plate, the DT gives 
more accurate results than those obtained from 
the IT. The resistance against deformation for 
corresponding to plates with clamped 
boundary condition is more than those plates 
with simply supported boundary condition. 
Consequently, the adjacent points to clamped 
boundary condition have lower velocity field 
than those adjacent points to simply supported 
boundary condition. 
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