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Abstract. We introduce and study a new class of spaces, namely β−topological vector spaces
via β−open sets. The relationships among these spaces with some existing spaces are inves-
tigated. In addition, some important and useful characterizations of β−topological vector
spaces are provided.
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1. Introduction

It is well-known that the advent of topological vector spaces brought a revolution in the
study of various branches of functional analysis. Because of nice properties and usefulness,
these spaces remain a fundamental notion in fixed point theory, operator theory and
various other advanced branches of mathematics. In 2015, Khan et al. [4] introduced and
studied the s-topological vector spaces which are a generalization of topological vector
spaces. In 2016, Khan and Iqbal [5] introduced the irresolute topological vector spaces
which are a particular brand of s-topological vector spaces but they are independent of
topological vector spaces. Ibrahim [3] initiated the study of α−topological vector spaces
which are contained in the class of s-topological vector spaces. In this paper, we introduce
a new class of spaces, namely, β−topological vector spaces. Some general properties
of β−topological vector spaces along with their relationships with certain other types
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of spaces are investigated. Furthermore, a broad characterizations of these spaces are
presented.

2. Preliminaries

Let X be a topological space. For a subset A of X, the closure of A and the interior of
A are denoted by Cl(A) and Int(A) respectively. We represent the set of real numbers
by R and the set of complex numbers by C. The notations ϵ and δ denote negligibly
small positive real numbers.

Definition 2.1 [1, 6, 7] A subset A of a topological space X is called
(a) semi-open if A ⊆ Cl(Int(A)),
(b) α−open if A ⊆ Int(Cl(Int(A))),
(c) β−open if A ⊆ Cl(Int(Cl(A))).

Clearly, every open set is α−open and every α−open set is semi-open and every semi-
open set is β−open but, in general, the converse need not be true.

Example 2.2 Let X = R with the usual topology. Consider A = [1, 2], B = (1, 2) ∩Q,
where Q denotes the set of rational numbers. Then A is semi-open but it is neither open
nor α−open. Also, notice that B is β−open which is not semi-open.

The complement of a β−open set is said to be β−closed set. The intersection of all
β−closed sets containing a subset A ⊆ X is called the β−closure of A and is denoted
by βCl(A). It is known that a subset A of X is β−closed if and only if A = βCl(A). A
point x ∈ βCl(A) if and only if A∩U ̸= ∅ for each β−open set U in X containing x. The
β−interior of a subset A ⊆ X is the union of all β−open sets in X contained in A and
is denoted by βInt(A). A point x of X is called β−interior point of a subset A if there
exists a β−open set U in X containing x such that x ∈ U ⊆ A. The set of all β−interior
points of A is equal to βInt(A). The family of all β−open (resp. β−closed) sets in X
will be denoted by βO(X) (resp. βC(X)).

Also we recall some definitions that will be used in the sequel.

Definition 2.3 Let L be a vector space over the field F (R or C). Let T be a topology
on L such that

(1) For each x, y ∈ L and each open neighborhood W of x + y in L, there exist open
neighborhoods U and V of x and y respectively, in L such that U + V ⊆ W ,

(2) For each λ ∈ F, x ∈ L and each open neighborhood W of λx in L, there exist open
neighborhoods U of λ in F and V of x in L such that U.V ⊆ W .
Then the pair (L(F ), T ) is called topological vector space.

Definition 2.4 [4] Let L be a vector space over the field F (R or C) and let T be a
topology on L such that

(1) For each x, y ∈ L and each open set W in L containing x+y, there exist semi-open
sets U and V in L containing x and y respectively such that U + V ⊆ W ,

(2) For each λ ∈ F, x ∈ L and each open set W in L containing λx, there exist
semi-open sets U in F containing λ and V in L containing x such that U.V ⊆ W .
Then the pair (L(F ), T ) is called s-topological vector space.

Definition 2.5 [5] Let L be a vector space over the field F (R or C) and T be a topology
on L such that

(1) For each x, y ∈ L and each semi-open set W in L containing x + y, there exist
semi-open sets U and V in L containing x and y respectively such that U + V ⊆ W ,
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(2) For each λ ∈ F, x ∈ L and each semi-open set W in L containing λx, there exist
semi-open sets U in F containing λ and V in L containing x such that U.V ⊆ W .
Then the pair (L(F ), T ) is called irresolute topological vector space.

Definition 2.6 [3] Let L be a vector space over the field F (R or C) and T be a topology
on L such that

(1) For each x, y ∈ L and each α−open set W in L containing x+y, there exist α−open
sets U and V in L containing x and y respectively such that U + V ⊆ W ,

(2) For each λ ∈ F, x ∈ L and each α−open set W in L containing λx, there exist
α−open sets U in F containing λ and V in L containing x such that U.V ⊆ W .
Then the pair (L(F ), T ) is called α−topological vector space.

3. β−topological vector spaces

The purpose of this section is to define and investigate some basic properties of
β−topological vector spaces.

Definition 3.1 Let E be a vector space over the field K, where K = R or C with
standard topology. Let τ be a topology on E such that the following conditions are
satisfied:

(1) For each x, y ∈ E and each open set W ⊆ E containing x+ y, there exist β−open
sets U and V in E containing x and y respectively, such that U + V ⊆ W ,

(2) For each λ ∈ K, x ∈ E and each open set W ⊆ E containing λx, there exist
β−open sets U in K containing λ and V in E containing x such that U.V ⊆ W .
Then the pair (E(K), τ) is called β−topological vector space (written in short, βTVS).

First of all we present some examples of β−topological vector spaces and then these
examples will be used in the sequel for investigating the relationships of β−topological
vector spaces with certain other types of spaces.

Example 3.2 Consider the field K = R with the standard topology. Let E = R be
the real vector space, is also endowed with the standard topology. Then (E(K), τ) is
β−topological vector space.

After tasting this example, an immediate question that comes into mind is that is there
any other topology on R which turn it out a β−topological vector space. The answer is
in affirmative. In fact, there are topologies on R other than the standard topology which
turn it out a β−topological vector space. Let us present some examples of them.

Example 3.3 Consider F = R with the standard topology. Let E = R be the vector
space of real numbers over the field F , is endowed with the topology τ = {∅, D,R}, where
D denotes the set of irrational numbers. Then

(1) For each x, y ∈ E, we have two cases:
Case (I) If x+ y is rational, then the only open neighborhood of x+ y in E is R. So,

there is nothing to prove.
Case (II) If x+ y is irrational, then for open neighborhood W = D of x+ y in E. We

have following sub-cases:
Sub-case (i) If both x and y are irrational, we can choose β−open sets U = {x} and

V = {y} in E such that U + V ⊆ W .
Sub-case (ii) If one of x or y is rational, say y. Then, for the selection of β−open sets

U = {x} and V = {p, y} in E, where p ∈ D such that p+ x ∈ D, we have U + V ⊆ W .
This verifies the first condition of β−topological vector spaces.
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(2) Let λ ∈ R and x ∈ E. If λx is rational, then it is straightforward to prove. Suppose
λx is irrational. Let W = D be an open neighborhood of λx. The following cases arise:

Case (I) If both λ and x are irrational, then, choose β−open sets U = [(λ− ϵ, λ+ ϵ)∩
Q] ∪ {λ} in R containing λ and V = {x} in E containing x, we see that U.V ⊆ W .

Case (II) If λ is rational and x is irrational, then for the selection of β−open sets
U = (λ − ϵ, λ + ϵ) ∩ Q in R containing λ and V = {x} in E containing x, we have
U.V ⊆ W .

Case (III) Finally, suppose λ is irrational and x is rational. Choose β−open sets U =
(λ− ϵ, λ+ ϵ)∩D of R and V = {x, p} of E such that p ∈ D with pq is irrational for each
q ∈ U , we find that U.V ⊆ W .
This proves that (E(R), τ) is β−topological vector space.

Example 3.4 Let E = R be the vector space of real numbers over the field K, where
K = R with standard topology and the topology τ on E be generated by the base
B = {(a, b), [c, d) : a, b, c and d are real numbers with 0 < c < d}. We show that (E(K), τ)
is β-topological vector space. For which we have to verify the following two conditions:

(1) Let x, y ∈ L. Then, for open neighborhood W = [x+ y, x+ y + ϵ) (resp. (x+ y −
ϵ, x+y+ ϵ)) of x+y in E, we can opt for β−open sets U = [x, x+ δ) (resp. (x− δ, x+ δ))
and V = [y, y + δ) (resp. (y − δ, y + δ)) of E containing x and y respectively, such that
U + V ⊆ W for each δ < ϵ

2 .
(2) Let x ∈ E and λ ∈ K. Consider open neighborhood W = [λx, λx + ϵ) (resp.

(λx− ϵ, λx+ ϵ)) of λx in E. We have following cases:
Case (1). If λ > 0 and x > 0, then clearly λx > 0. We can choose β−open sets

U = [λ, λ+δ) (resp. (λ−δ, λ+δ)) in K containing λ and V = [x, x+δ) (resp. (x−δ, x+δ))
in E containing x such that U.V ⊆ W for each δ < ϵ

λ+x+1 .
Case (II). If λ < 0 and x < 0, then λx > 0. We can choose β−open sets U = (λ− δ, λ]

(resp. (λ−δ, λ+δ)) in K and V = (x−δ, x] (resp. (x−δ, x+δ)) in E such that U.V ⊆ W
for sufficiently appropriate δ ⩽ −ϵ

λ+x−1 .
Case (III). If λ = 0 and x > 0 (resp. λ > 0 and x = 0). Then λx = 0. Consider any

open neighborhood W = (−ϵ, ϵ) of 0 in E. We can opt for β−open sets U = (−δ, δ)
(resp. U = (λ− δ, λ+ δ)) of R containing λ and V = (x− δ, x+ δ) (resp. V = (−δ, δ)) of
E containing x such that U.V ⊆ W for each δ < ϵ

x+1 (resp. δ < ϵ
λ+1).

Case (IV). If λ = 0 and x < 0 (resp. λ < 0 and x = 0). Consider any open neighborhood
W = (−ϵ, ϵ) of 0 in E. Then, for the selection of β−open sets U = (−δ, δ) (resp. U = (λ−
δ, λ+δ)) in R and V = (x−δ, x+δ) (resp. V = (−δ, δ)) in E, we have U.V ⊆ W = (−ϵ, ϵ)
for each δ < ϵ

1−x (resp. (δ < ϵ
1−λ)).

Case (V). If λ = 0 and x = 0. Consider any open neighborhood W = (−ϵ, ϵ) of 0 in
E, we can find β−open sets U = (−δ, δ) of R and V = (−δ, δ) of E, such that U.V ⊆ W
for each δ <

√
ϵ.

Case (VI). If λ < 0, x > 0 (resp. λ > 0, x < 0). In this case, there is only one type of
open neighborhoodW = (λx−ϵ, λx+ϵ) of λx in E. Choose β−open sets U = (λ−δ, λ+δ)
in R and V = (x−δ, x+δ) in E, we have U.V ⊆ W for each δ < ϵ

x−λ+1 (resp. δ < ϵ
λ−x+1).

Hence, (E(R), τ) is β−topological vector space.

The definitions clarify that every s-topological vector space is β−topological vector
space but the converse is not true because, in general, Example 3.3 is not s-topological
vector space.

From here on, E denotes a β−topological vector space (E(K), τ) unless stated explicitly
and by a scalar we mean an element of the associated field K of a β−topological vector
space (E(K), τ). Now, we discuss some basic properties of β−topological vector spaces.
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Theorem 3.5 Let A be any open subset of a β−topological vector space E. Then the
following are true:

(i) x+A ∈ βO(E) for each x ∈ E,
(ii) λA ∈ βO(E) for each non-zero scalar λ.

Proof. (i) Let y ∈ x + A. Then there exist β−open sets U, V ∈ βO(E) containing −x
and y, respectively, such that

U + V ⊆ A ⇒ −x+ V ⊆ U + V ⊆ A ⇒ V ⊆ x+A ⇒ y ∈ Intβ(x+A).

Hence, x+A = Intβ(x+A). This proves that x+A is β−open set in E.
(ii) Let x ∈ λA. By the definition of β−topological vector spaces, there exist β−open

sets U in K containing 1
λ and V in E containing x such that

U.V ⊆ A ⇒ x ∈ V ⊆ λA ⇒ x ∈ Intβ(λA) ⇒ λA = Intβ(λA).

Thus, λA ∈ βO(E). ■

Corollary 3.6 For any open subset A of a β−topological vector space E, the following
are true:

(i) x+A ⊆ Cl(Int(Cl(x+A))) for each x ∈ E,
(ii) λA ⊆ Cl(Int(Cl(λA))) for each non-zero scalar λ.

Theorem 3.7 Let F be any closed subset of a β−topological vector space E. Then the
following are true:

(i) x+ F ∈ βC(E) for each x ∈ E,
(ii) λF ∈ βC(E) for each non-zero scalar λ.

Proof. (i) Suppose that y ∈ βCl(x+F ). Consider z = −x+y and let W be any open set
in E containing z. Then there exist β−open sets U and V in E such that −x ∈ U, y ∈ V
and U + V ⊆ W . Since y ∈ βCl(x+ F ), (x+ F ) ∩ V ̸= ∅. So, there is a ∈ (x+ F ) ∩ V .
Now,

−x+ a ∈ F ∩ (U + V ) ⊆ F ∩W ⇒ F ∩W ̸= ∅ ⇒ z ∈ Cl(F ) = F ⇒ y ∈ x+ F .

Hence, x+ F = βCl(x+ F ). This proves that x+ F is β−closed set in E.
(ii) Assume that x ∈ βCl(λF ) and let W be any open neighborhood of y = 1

λx in E.

Since E is βTVS, there exist β−open sets U in K containing 1
λ and V in E containing

x such that U.V ⊆ W . By hypothesis, (λF ) ∩ V ̸= ∅. Therefore, there is a ∈ (λF ) ∩ V .
Now,

1
λa ∈ F ∩ (U.V ) ⊆ F ∩W ⇒ F ∩W ̸= ∅ ⇒ y ∈ Cl(F ) = F ⇒ x ∈ λF

and thereby, λF = βCl(λF ). Hence, λF ∈ βC(E). ■

Corollary 3.8 For any closed subset F of a β−topological vector space E, the following
are true:

(i) Int(Cl(Int(x+ F ))) ⊆ x+ F for each x ∈ E,
(ii) Int(Cl(Int(λF ))) ⊆ λF for each non-zero scalar λ.

Theorem 3.9 Let A and B be any subsets of a β−topological vector space E. Then
βCl(A) + βCl(B) ⊆ Cl(A+B).

Proof. Let x ∈ βCl(A), y ∈ βCl(B) and let W be any open neighborhood of x+y in E.
Then, by the definition of β−topological vector spaces, there exist β−open sets U, V ∈
βO(E) such that x ∈ U, y ∈ V and U+V ⊆ W . By assumption, there are a ∈ A∩U and
b ∈ B ∩V . Consequently, a+ b ∈ (A+B)∩ (U +V ) ⊆ (A+B)∩W ⇒ (A+B)∩W ̸= ∅
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and as a result, x+ y ∈ Cl(A+B). Therefore, βCl(A) + βCl(B) ⊆ Cl(A+B). ■

4. Characterizations

In this section, we obtain some useful characterizations of β−topological vector spaces.

Theorem 4.1 For a subset A of a β−topological vector space E, the following are valid:
(a) βCl(x+A) ⊆ x+ Cl(A) for each x ∈ E,
(b) x+ βCl(A) ⊆ Cl(x+A) for each x ∈ E,
(c) x+ Int(A) ⊆ βInt(x+A) for each x ∈ E,
(d) Int(x+A) ⊆ x+ βInt(A) for each x ∈ E.

Proof. (a) Let y ∈ βCl(x + A) and consider z = −x + y in E. Let W be any open
neighborhood of z. Then we get β−open sets U containing −x and V containing y in E
such that U + V ⊆ W . Whence we find that (x + A) ∩ V ̸= ∅ ⇒ there is a ∈ E such
that a ∈ (x+ A) ∩ V . Now, −x+ a ∈ A ∩ (U + V ) ⊆ A ∩W ⇒ A ∩W ̸= ∅ and hence,
z ∈ Cl(A); that is, y ∈ x+ Cl(A). Therefore, βCl(x+A) ⊆ x+ Cl(A).

(b) Let z ∈ x+βCl(A). Then z = x+y for some y ∈ βCl(A). Notice that for any open
neighborhood W of z, there exist β−open sets U, V ∈ βO(E) such that x ∈ U, y ∈ V
and U + V ⊆ W . Since y ∈ βCl(A), A ∩ V ̸= ∅ ⇒ there is a ∈ A ∩ V . Now,

x+ a ∈ (x+A) ∩ (U + V ) ⊆ (x+A) ∩W ⇒ (x+A) ∩W ̸= ∅ ⇒ z ∈ Cl(x+A).

Hence, the assertion follows.
(c) Let y ∈ x+ Int(A). Then U +V ⊆ Int(A) where U, V ∈ βO(E) such that −x ∈ U

and y ∈ V . Whence we have −x+ V ⊆ U + V ⊆ A ⇒ V ⊆ x+ A. Since V is β−open,
y ∈ βInt(x+A) and consequently, x+ Int(A) ⊆ βInt(x+A).

(d) Let y ∈ Int(x+A). Then y = x+ a for some a ∈ A. Since E is βTVS, there exist
U, V ∈ βO(E) such that x ∈ U, a ∈ V and U + V ⊆ Int(x+A). Now x+ V ⊆ U + V ⊆
Int(x+A) ⊆ x+A implies that y ∈ x+ βInt(A). Therefore, the assertion follows. ■

The following is the analog of Theorem 4.1.

Theorem 4.2 For a subset A of a β−topological vector space E, the following are valid:
(a) βCl(λ.A) ⊆ λ.Cl(A) for each non-zero scalar λ,
(b) λ.βCl(A) ⊆ Cl(λ.A) for each non-zero scalar λ,
(c) λ.Int(A) ⊆ βInt(λ.A) for each non-zero scalar λ,
(d) Int(λ.A) ⊆ λ.βInt(A) for each non-zero scalar λ.

Theorem 4.3 Let A be any subset of a β−topological vector space E. Then
(a) Int(Cl(Int(x+A))) ⊆ x+ Cl(A) for each x ∈ E,
(b) x+ Int(Cl(Int(A))) ⊆ Cl(x+A) for each x ∈ E,
(c) x+ Int(A) ⊆ Cl(Int(Cl(x+A))) for each x ∈ E,
(d) Int(x+A) ⊆ x+ Cl(Int(Cl(A))) for each x ∈ E.

Proof. (a) Since Cl(A) is closed, by Theorem 3.7, x+Cl(A) is β−closed. Consequently,
Int(Cl(Int(x+A))) ⊆ x+ Cl(A).

(b) In view of Theorem 3.7, −x+Cl(x+A) is β−closed and hence Int(Cl(Int(A))) ⊆
−x+ Cl(x+A). Thereby the assertion follows.

(c) In consequence of Theorem 3.5, x + Int(A) is β−open. Therefore, x + Int(A) ⊆
Cl(Int(Cl(x+ Int(A)))) ⊆ Cl(Int(Cl(x+A))). Hence the assertion follows.

(d) Obvious. ■

The analog of Theorem 4.3 is the following:
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Theorem 4.4 Let A be any subset of a β−topological vector space E. Then
(a) Int(Cl(Int(λA))) ⊆ λCl(A) for each non-zero scalar λ,
(b) λInt(Cl(Int(A))) ⊆ Cl(λA) for each non-zero scalar λ,
(c) λInt(A) ⊆ Cl(Int(Cl(λA))) for each non-zero scalar λ,
(d) Int(λA) ⊆ λCl(Int(Cl(A))) for each non-zero scalar λ.

Theorem 4.5 For any open set U in a β−topological vector space E, x+ Int(Cl(U)) ⊆
Cl(x+ U) for each x ∈ E.

Proof. On account of Theorem 4.3(b), x + Int(Cl(Int(U))) ⊆ Cl(x + U). Since U is
open, we have x+ Int(Cl(U)) ⊆ Cl(x+ U). This completes the proof. ■

Theorem 4.6 For any closed set F in a β−topological vector space E, Int(x + F ) ⊆
x+ Cl(Int(F )) for each x ∈ E.

Proof. In view of Theorem 4.3(d), Int(x+ F ) ⊆ x+Cl(Int(Cl(F ))) = x+Cl(Int(F ))
because F is closed. Hence the proof is finished. ■

Definition 4.7 [1] A mapping f : X → Y from a topological space X to a topological
space Y is called β−continuous if for each x ∈ X and each open set V in Y containing
f(x), there exists a β−open set U in X containing x such that f(U) ⊆ V .

Theorem 4.8 For a β−topological vector space E, the following are true:
(a) the translation mapping fx : E → E defined by fx(y) = x + y for all y ∈ E is

β−continuous,
(b) the mapping fλ : E → E defined by fλ(x) = λx for all x ∈ E is β−continuous,

where λ is a fixed scalar.

Proof. (a) Let y ∈ E and V be an open set in E containing fx(y) = x+ y. Then by the
definition of β−topological vector spaces, we get U, U ′ ∈ βO(E) such that x ∈ U, y ∈ U ′

and U + U ′ ⊆ V and consequently, fx(U
′) ⊆ V . This proves that fx is β−continuous.

(b) Let x ∈ E be an arbitrary. Let W be any open set in E containing λx. Then there
exist β−open sets U in K containing λ and V in E containing x such that U.V ⊆ W .
Now λV ⊆ U.V ⊆ W ⇒ fλ(x) ⊆ W and hence fλ is β−continuous. ■

Theorem 4.9 Let E1 be a β−topological vector space, E2 be a topological vector space
over the same field K. Let f : E1 → E2 be a linear map such that f is continuous at 0.
Then f is β−continuous everywhere.

Proof. Let x be any non-zero element of E1 and V be an open set in E2 containing
f(x). Since translation of an open set in topological vector spaces is open, V − f(x) is
open set in E2 containing 0. Since f is continuous at 0, there exists an open set U in
E1 containing 0 such that f(U) ⊆ V − f(x). Furthermore, linearity of f implies that
f(x+U) ⊆ V . By Theorem 3.5, x+U is β−open and hence f is β−continuous at x. By
hypothesis, f is β−continuous at 0. This reflects that f is β−continuous. ■

Corollary 4.10 Let E be a β−topological vector space over the field K. Let f : E → K
be a linear functional which is continuous at 0. Then the set F = {x ∈ E : f(x) = 0} is
β−closed.

Definition 4.11 [2] A topological space X is called β−compact if every cover of X by
β−open sets of X has a finite subcover. A subset A of X is said to be β−compact relative
to X if every cover of A by β−open sets of X has a finite subcover.

Theorem 4.12 Let A be any β−compact set in a β−topological vector space E. Then
x+A is compact for each x ∈ E.
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Proof. Let U = {Uα : α ∈ Λ} be an open cover of x + A. Then A ⊆ ∪α∈Λ(−x + Uα).
By hypothesis and Theorem 3.5, A ⊆ ∪α∈Λ0

(−x + Uα) for some finite Λ0 ⊆ Λ. Whence
we find that x + A ⊆ ∪α∈Λ0

Uα. This shows that x + A is compact. Hence, the proof is
complete. ■

Theorem 4.13 Let A be any β−compact set in a β−topological vector space E. Then
λA is compact for each scalar λ.

Proof. If λ = 0 we are nothing to prove. Assume that λ is non-zero. Let U = {Uα :
α ∈ Λ} be an open cover of λA. Then A ⊆ ∪α∈Λ(

1
λUα). In view of Theorem 3.1, 1

λUα

is β−open and consequently, by hypothesis, A ⊆ ∪α∈Λ0
( 1λUα) for some finite Λ0 ⊆ Λ.

Whence we find that λA ⊆ ∪α∈Λ0
Uα. This proves that λA is compact. ■
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