Journal of Linear and Topological Algebra Vol. 08, No. 01, 2019, 63-70

On β -topological vector spaces

S. Sharma^{a,*}, M. Ram^a

^aDepartment of Mathematics, University of Jammu, JK-18006, India.

Received 1 September 2018; Revised 7 October 2018; Accepted 10 November 2018.

Communicated by Hamidreza Rahimi

Abstract. We introduce and study a new class of spaces, namely β -topological vector spaces via β -open sets. The relationships among these spaces with some existing spaces are investigated. In addition, some important and useful characterizations of β -topological vector spaces are provided.

© 2019 IAUCTB. All rights reserved.

Keywords: β -open sets, β -closed sets, β -topological vector spaces.

2010 AMS Subject Classification: 57N17, 54C08, 57N99.

1. Introduction

It is well-known that the advent of topological vector spaces brought a revolution in the study of various branches of functional analysis. Because of nice properties and usefulness, these spaces remain a fundamental notion in fixed point theory, operator theory and various other advanced branches of mathematics. In 2015, Khan et al. [4] introduced and studied the s-topological vector spaces which are a generalization of topological vector spaces. In 2016, Khan and Iqbal [5] introduced the irresolute topological vector spaces which are a particular brand of s-topological vector spaces but they are independent of topological vector spaces. Ibrahim [3] initiated the study of α -topological vector spaces which are contained in the class of s-topological vector spaces. In this paper, we introduce a new class of spaces, namely, β -topological vector spaces. Some general properties of β -topological vector spaces along with their relationships with certain other types

© 2019 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

 $^{^{*} {\}rm Corresponding \ author}.$

E-mail address: shallujamwal09@gmail.com (S. Sharma); madhuram0502@gmail.com (M. Ram).

of spaces are investigated. Furthermore, a broad characterizations of these spaces are presented.

2. Preliminaries

Let X be a topological space. For a subset A of X, the closure of A and the interior of A are denoted by Cl(A) and Int(A) respectively. We represent the set of real numbers by \mathbb{R} and the set of complex numbers by \mathbb{C} . The notations ϵ and δ denote negligibly small positive real numbers.

Definition 2.1 [1, 6, 7] A subset A of a topological space X is called

(a) semi-open if $A \subseteq Cl(Int(A))$,

(b) α -open if $A \subseteq Int(Cl(Int(A)))$,

(c) β -open if $A \subseteq Cl(Int(Cl(A)))$.

Clearly, every open set is α -open and every α -open set is semi-open and every semi-open set is β -open but, in general, the converse need not be true.

Example 2.2 Let $X = \mathbb{R}$ with the usual topology. Consider A = [1, 2], $B = (1, 2) \cap \mathbb{Q}$, where \mathbb{Q} denotes the set of rational numbers. Then A is semi-open but it is neither open nor α -open. Also, notice that B is β -open which is not semi-open.

The complement of a β -open set is said to be β -closed set. The intersection of all β -closed sets containing a subset $A \subseteq X$ is called the β -closure of A and is denoted by $\beta Cl(A)$. It is known that a subset A of X is β -closed if and only if $A = \beta Cl(A)$. A point $x \in \beta Cl(A)$ if and only if $A \cap U \neq \emptyset$ for each β -open set U in X containing x. The β -interior of a subset $A \subseteq X$ is the union of all β -open sets in X contained in A and is denoted by $\beta Int(A)$. A point x of X is called β -interior point of a subset A if there exists a β -open set U in X containing x such that $x \in U \subseteq A$. The set of all β -interior points of A is equal to $\beta Int(A)$. The family of all β -open (resp. β -closed) sets in X will be denoted by $\beta O(X)$ (resp. $\beta C(X)$).

Also we recall some definitions that will be used in the sequel.

Definition 2.3 Let *L* be a vector space over the field $F (\mathbb{R} \text{ or } \mathbb{C})$. Let *T* be a topology on *L* such that

(1) For each $x, y \in L$ and each open neighborhood W of x + y in L, there exist open neighborhoods U and V of x and y respectively, in L such that $U + V \subseteq W$,

(2) For each $\lambda \in F$, $x \in L$ and each open neighborhood W of λx in L, there exist open neighborhoods U of λ in F and V of x in L such that $U.V \subseteq W$.

Then the pair $(L_{(F)}, T)$ is called topological vector space.

Definition 2.4 [4] Let L be a vector space over the field F (\mathbb{R} or \mathbb{C}) and let T be a topology on L such that

(1) For each $x, y \in L$ and each open set W in L containing x + y, there exist semi-open sets U and V in L containing x and y respectively such that $U + V \subseteq W$,

(2) For each $\lambda \in F$, $x \in L$ and each open set W in L containing λx , there exist semi-open sets U in F containing λ and V in L containing x such that $U.V \subseteq W$. Then the pair $(L_{(F)}, T)$ is called s-topological vector space.

Definition 2.5 [5] Let *L* be a vector space over the field $F (\mathbb{R} \text{ or } \mathbb{C})$ and *T* be a topology on *L* such that

(1) For each $x, y \in L$ and each semi-open set W in L containing x + y, there exist semi-open sets U and V in L containing x and y respectively such that $U + V \subseteq W$,

(2) For each $\lambda \in F$, $x \in L$ and each semi-open set W in L containing λx , there exist semi-open sets U in F containing λ and V in L containing x such that $U.V \subseteq W$. Then the pair $(L_{(F)}, T)$ is called irresolute topological vector space.

Definition 2.6 [3] Let L be a vector space over the field $F (\mathbb{R} \text{ or } \mathbb{C})$ and T be a topology on L such that

(1) For each $x, y \in L$ and each α -open set W in L containing x+y, there exist α -open sets U and V in L containing x and y respectively such that $U + V \subseteq W$,

(2) For each $\lambda \in F$, $x \in L$ and each α -open set W in L containing λx , there exist α -open sets U in F containing λ and V in L containing x such that $U.V \subseteq W$. Then the pair $(L_{(F)}, T)$ is called α -topological vector space.

3. β -topological vector spaces

The purpose of this section is to define and investigate some basic properties of β -topological vector spaces.

Definition 3.1 Let E be a vector space over the field K, where $K = \mathbb{R}$ or \mathbb{C} with standard topology. Let τ be a topology on E such that the following conditions are satisfied:

(1) For each $x, y \in E$ and each open set $W \subseteq E$ containing x + y, there exist β -open sets U and V in E containing x and y respectively, such that $U + V \subseteq W$,

(2) For each $\lambda \in K$, $x \in E$ and each open set $W \subseteq E$ containing λx , there exist β -open sets U in K containing λ and V in E containing x such that $U.V \subseteq W$.

Then the pair $(E_{(K)}, \tau)$ is called β -topological vector space (written in short, β TVS).

First of all we present some examples of β -topological vector spaces and then these examples will be used in the sequel for investigating the relationships of β -topological vector spaces with certain other types of spaces.

Example 3.2 Consider the field $K = \mathbb{R}$ with the standard topology. Let $E = \mathbb{R}$ be the real vector space, is also endowed with the standard topology. Then $(E_{(K)}, \tau)$ is β -topological vector space.

After tasting this example, an immediate question that comes into mind is that is there any other topology on \mathbb{R} which turn it out a β -topological vector space. The answer is in affirmative. In fact, there are topologies on \mathbb{R} other than the standard topology which turn it out a β -topological vector space. Let us present some examples of them.

Example 3.3 Consider $F = \mathbb{R}$ with the standard topology. Let $E = \mathbb{R}$ be the vector space of real numbers over the field F, is endowed with the topology $\tau = \{\emptyset, D, \mathbb{R}\}$, where D denotes the set of irrational numbers. Then

(1) For each $x, y \in E$, we have two cases:

Case (I) If x + y is rational, then the only open neighborhood of x + y in E is \mathbb{R} . So, there is nothing to prove.

Case (II) If x + y is irrational, then for open neighborhood W = D of x + y in E. We have following sub-cases:

Sub-case (i) If both x and y are irrational, we can choose β -open sets $U = \{x\}$ and $V = \{y\}$ in E such that $U + V \subseteq W$.

Sub-case (ii) If one of x or y is rational, say y. Then, for the selection of β -open sets $U = \{x\}$ and $V = \{p, y\}$ in E, where $p \in D$ such that $p + x \in D$, we have $U + V \subseteq W$.

This verifies the first condition of β -topological vector spaces.

(2) Let $\lambda \in \mathbb{R}$ and $x \in E$. If λx is rational, then it is straightforward to prove. Suppose λx is irrational. Let W = D be an open neighborhood of λx . The following cases arise: Case (I) If both λ and x are irrational, then, choose β -open sets $U = [(\lambda - \epsilon, \lambda + \epsilon) \cap$

 $\mathbb{Q} \cup \{\lambda\}$ in \mathbb{R} containing λ and $V = \{x\}$ in E containing x, we see that $U V \subseteq W$.

Case (II) If λ is rational and x is irrational, then for the selection of β -open sets $U = (\lambda - \epsilon, \lambda + \epsilon) \cap \mathbb{Q}$ in \mathbb{R} containing λ and $V = \{x\}$ in E containing x, we have $U \cdot V \subseteq W$.

Case (III) Finally, suppose λ is irrational and x is rational. Choose β -open sets $U = (\lambda - \epsilon, \lambda + \epsilon) \cap D$ of \mathbb{R} and $V = \{x, p\}$ of E such that $p \in D$ with pq is irrational for each $q \in U$, we find that $U.V \subseteq W$.

This proves that $(E_{(\mathbb{R})}, \tau)$ is β -topological vector space.

Example 3.4 Let $E = \mathbb{R}$ be the vector space of real numbers over the field K, where $K = \mathbb{R}$ with standard topology and the topology τ on E be generated by the base $\mathcal{B} = \{(a, b), [c, d) : a, b, c \text{ and } d \text{ are real numbers with } 0 < c < d\}$. We show that $(E_{(K)}, \tau)$ is β -topological vector space. For which we have to verify the following two conditions:

(1) Let $x, y \in L$. Then, for open neighborhood $W = [x + y, x + y + \epsilon)$ (resp. $(x + y - \epsilon, x + y + \epsilon)$) of x + y in E, we can opt for β -open sets $U = [x, x + \delta)$ (resp. $(x - \delta, x + \delta)$) and $V = [y, y + \delta)$ (resp. $(y - \delta, y + \delta)$) of E containing x and y respectively, such that $U + V \subseteq W$ for each $\delta < \frac{\epsilon}{2}$.

(2) Let $x \in E$ and $\lambda \in K$. Consider open neighborhood $W = [\lambda x, \lambda x + \epsilon)$ (resp. $(\lambda x - \epsilon, \lambda x + \epsilon))$ of λx in E. We have following cases:

Case (1). If $\lambda > 0$ and x > 0, then clearly $\lambda x > 0$. We can choose β -open sets $U = [\lambda, \lambda + \delta)$ (resp. $(\lambda - \delta, \lambda + \delta)$) in K containing λ and $V = [x, x + \delta)$ (resp. $(x - \delta, x + \delta)$) in E containing x such that $U.V \subseteq W$ for each $\delta < \frac{\epsilon}{\lambda + x + 1}$.

Case (II). If $\lambda < 0$ and x < 0, then $\lambda x > 0$. We can choose β -open sets $U = (\lambda - \delta, \lambda]$ (resp. $(\lambda - \delta, \lambda + \delta)$) in K and $V = (x - \delta, x]$ (resp. $(x - \delta, x + \delta)$) in E such that $U.V \subseteq W$ for sufficiently appropriate $\delta \leq \frac{-\epsilon}{\lambda + x - 1}$.

Case (III). If $\lambda = 0$ and x > 0 (resp. $\lambda > 0$ and x = 0). Then $\lambda x = 0$. Consider any open neighborhood $W = (-\epsilon, \epsilon)$ of 0 in E. We can opt for β -open sets $U = (-\delta, \delta)$ (resp. $U = (\lambda - \delta, \lambda + \delta)$) of \mathbb{R} containing λ and $V = (x - \delta, x + \delta)$ (resp. $V = (-\delta, \delta)$) of E containing x such that $U.V \subseteq W$ for each $\delta < \frac{\epsilon}{x+1}$ (resp. $\delta < \frac{\epsilon}{\lambda+1}$).

Case (IV). If $\lambda = 0$ and x < 0 (resp. $\lambda < 0$ and x = 0). Consider any open neighborhood $W = (-\epsilon, \epsilon)$ of 0 in E. Then, for the selection of β -open sets $U = (-\delta, \delta)$ (resp. $U = (\lambda - \delta, \lambda + \delta)$) in \mathbb{R} and $V = (x - \delta, x + \delta)$ (resp. $V = (-\delta, \delta)$) in E, we have $U.V \subseteq W = (-\epsilon, \epsilon)$ for each $\delta < \frac{\epsilon}{1-x}$ (resp. $(\delta < \frac{\epsilon}{1-\lambda})$).

Case (V). If $\lambda = 0$ and x = 0. Consider any open neighborhood $W = (-\epsilon, \epsilon)$ of 0 in E, we can find β -open sets $U = (-\delta, \delta)$ of \mathbb{R} and $V = (-\delta, \delta)$ of E, such that $U.V \subseteq W$ for each $\delta < \sqrt{\epsilon}$.

Case (VI). If $\lambda < 0$, x > 0 (resp. $\lambda > 0$, x < 0). In this case, there is only one type of open neighborhood $W = (\lambda x - \epsilon, \lambda x + \epsilon)$ of λx in E. Choose β -open sets $U = (\lambda - \delta, \lambda + \delta)$ in \mathbb{R} and $V = (x - \delta, x + \delta)$ in E, we have $U.V \subseteq W$ for each $\delta < \frac{\epsilon}{x - \lambda + 1}$ (resp. $\delta < \frac{\epsilon}{\lambda - x + 1}$). Hence, $(E_{(\mathbb{R})}, \tau)$ is β -topological vector space.

The definitions clarify that every s-topological vector space is β -topological vector space but the converse is not true because, in general, Example 3.3 is not s-topological vector space.

From here on, E denotes a β -topological vector space $(E_{(K)}, \tau)$ unless stated explicitly and by a scalar we mean an element of the associated field K of a β -topological vector space $(E_{(K)}, \tau)$. Now, we discuss some basic properties of β -topological vector spaces. **Theorem 3.5** Let A be any open subset of a β -topological vector space E. Then the following are true:

(i) $x + A \in \beta O(E)$ for each $x \in E$, (ii) $\lambda A \in \beta O(E)$ for each non-zero scalar λ .

Proof. (i) Let $y \in x + A$. Then there exist β -open sets $U, V \in \beta O(E)$ containing -x and y, respectively, such that

$$U + V \subseteq A \Rightarrow -x + V \subseteq U + V \subseteq A \Rightarrow V \subseteq x + A \Rightarrow y \in Int_{\beta}(x + A).$$

Hence, $x + A = Int_{\beta}(x + A)$. This proves that x + A is β -open set in E.

(ii) Let $x \in \lambda A$. By the definition of β -topological vector spaces, there exist β -open sets U in K containing $\frac{1}{\lambda}$ and V in E containing x such that

$$U.V \subseteq A \Rightarrow x \in V \subseteq \lambda A \Rightarrow x \in Int_{\beta}(\lambda A) \Rightarrow \lambda A = Int_{\beta}(\lambda A).$$

Thus, $\lambda A \in \beta O(E)$.

Corollary 3.6 For any open subset A of a β -topological vector space E, the following are true:

(i) $x + A \subseteq Cl(Int(Cl(x + A)))$ for each $x \in E$,

(ii) $\lambda A \subseteq Cl(Int(Cl(\lambda A)))$ for each non-zero scalar λ .

Theorem 3.7 Let F be any closed subset of a β -topological vector space E. Then the following are true:

(i) $x + F \in \beta C(E)$ for each $x \in E$,

(ii) $\lambda F \in \beta C(E)$ for each non-zero scalar λ .

Proof. (i) Suppose that $y \in \beta Cl(x+F)$. Consider z = -x+y and let W be any open set in E containing z. Then there exist β -open sets U and V in E such that $-x \in U$, $y \in V$ and $U + V \subseteq W$. Since $y \in \beta Cl(x+F)$, $(x+F) \cap V \neq \emptyset$. So, there is $a \in (x+F) \cap V$. Now,

$$-x + a \in F \cap (U + V) \subseteq F \cap W \implies F \cap W \neq \emptyset \implies z \in Cl(F) = F \implies y \in x + F.$$

Hence, $x + F = \beta C l(x + F)$. This proves that x + F is β -closed set in E.

(ii) Assume that $x \in \beta Cl(\lambda F)$ and let W be any open neighborhood of $y = \frac{1}{\lambda}x$ in E. Since E is β TVS, there exist β -open sets U in K containing $\frac{1}{\lambda}$ and V in E containing x such that $U.V \subseteq W$. By hypothesis, $(\lambda F) \cap V \neq \emptyset$. Therefore, there is $a \in (\lambda F) \cap V$. Now,

$$\frac{1}{\lambda}a \in F \cap (U.V) \subseteq F \cap W \Rightarrow F \cap W \neq \emptyset \Rightarrow y \in Cl(F) = F \Rightarrow x \in \lambda F$$

and thereby, $\lambda F = \beta C l(\lambda F)$. Hence, $\lambda F \in \beta C(E)$.

Corollary 3.8 For any closed subset F of a β -topological vector space E, the following are true:

(i) $Int(Cl(Int(x+F))) \subseteq x+F$ for each $x \in E$,

(ii) $Int(Cl(Int(\lambda F))) \subseteq \lambda F$ for each non-zero scalar λ .

Theorem 3.9 Let A and B be any subsets of a β -topological vector space E. Then $\beta Cl(A) + \beta Cl(B) \subseteq Cl(A+B)$.

Proof. Let $x \in \beta Cl(A)$, $y \in \beta Cl(B)$ and let W be any open neighborhood of x + y in E. Then, by the definition of β -topological vector spaces, there exist β -open sets $U, V \in \beta O(E)$ such that $x \in U$, $y \in V$ and $U + V \subseteq W$. By assumption, there are $a \in A \cap U$ and $b \in B \cap V$. Consequently, $a + b \in (A + B) \cap (U + V) \subseteq (A + B) \cap W \Rightarrow (A + B) \cap W \neq \emptyset$

and as a result, $x + y \in Cl(A + B)$. Therefore, $\beta Cl(A) + \beta Cl(B) \subseteq Cl(A + B)$.

4. Characterizations

In this section, we obtain some useful characterizations of β -topological vector spaces.

Theorem 4.1 For a subset A of a β -topological vector space E, the following are valid: (a) $\beta Cl(x + A) \subseteq x + Cl(A)$ for each $x \in E$,

- (b) $x + \beta Cl(A) \subseteq Cl(x + A)$ for each $x \in E$,
- (c) $x + Int(A) \subseteq \beta Int(x + A)$ for each $x \in E$,
- (d) $Int(x+A) \subseteq x + \beta Int(A)$ for each $x \in E$.

Proof. (a) Let $y \in \beta Cl(x + A)$ and consider z = -x + y in E. Let W be any open neighborhood of z. Then we get β -open sets U containing -x and V containing y in Esuch that $U + V \subseteq W$. Whence we find that $(x + A) \cap V \neq \emptyset \Rightarrow$ there is $a \in E$ such that $a \in (x + A) \cap V$. Now, $-x + a \in A \cap (U + V) \subseteq A \cap W \Rightarrow A \cap W \neq \emptyset$ and hence, $z \in Cl(A)$; that is, $y \in x + Cl(A)$. Therefore, $\beta Cl(x + A) \subseteq x + Cl(A)$.

(b) Let $z \in x + \beta Cl(A)$. Then z = x + y for some $y \in \beta Cl(A)$. Notice that for any open neighborhood W of z, there exist β -open sets $U, V \in \beta O(E)$ such that $x \in U, y \in V$ and $U + V \subseteq W$. Since $y \in \beta Cl(A), A \cap V \neq \emptyset \Rightarrow$ there is $a \in A \cap V$. Now,

$$x + a \in (x + A) \cap (U + V) \subseteq (x + A) \cap W \implies (x + A) \cap W \neq \emptyset \implies z \in Cl(x + A).$$

Hence, the assertion follows.

(c) Let $y \in x + Int(A)$. Then $U + V \subseteq Int(A)$ where $U, V \in \beta O(E)$ such that $-x \in U$ and $y \in V$. Whence we have $-x + V \subseteq U + V \subseteq A \Rightarrow V \subseteq x + A$. Since V is β -open, $y \in \beta Int(x + A)$ and consequently, $x + Int(A) \subseteq \beta Int(x + A)$.

(d) Let $y \in Int(x + A)$. Then y = x + a for some $a \in A$. Since E is β TVS, there exist $U, V \in \beta O(E)$ such that $x \in U$, $a \in V$ and $U + V \subseteq Int(x + A)$. Now $x + V \subseteq U + V \subseteq Int(x + A) \subseteq x + A$ implies that $y \in x + \beta Int(A)$. Therefore, the assertion follows.

The following is the analog of Theorem 4.1.

Theorem 4.2 For a subset A of a β -topological vector space E, the following are valid:

- (a) $\beta Cl(\lambda,A) \subseteq \lambda.Cl(A)$ for each non-zero scalar λ ,
- (b) $\lambda . \beta Cl(A) \subseteq Cl(\lambda . A)$ for each non-zero scalar λ ,
- (c) $\lambda.Int(A) \subseteq \beta Int(\lambda.A)$ for each non-zero scalar λ ,
- (d) $Int(\lambda A) \subseteq \lambda \beta Int(A)$ for each non-zero scalar λ .

Theorem 4.3 Let A be any subset of a β -topological vector space E. Then

- (a) $Int(Cl(Int(x+A))) \subseteq x + Cl(A)$ for each $x \in E$,
- (b) $x + Int(Cl(Int(A))) \subseteq Cl(x + A)$ for each $x \in E$,
- (c) $x + Int(A) \subseteq Cl(Int(Cl(x + A)))$ for each $x \in E$,
- (d) $Int(x+A) \subseteq x + Cl(Int(Cl(A)))$ for each $x \in E$.

Proof. (a) Since Cl(A) is closed, by Theorem 3.7, x + Cl(A) is β -closed. Consequently, $Int(Cl(Int(x + A))) \subseteq x + Cl(A)$.

(b) In view of Theorem 3.7, -x + Cl(x + A) is β -closed and hence $Int(Cl(Int(A))) \subseteq -x + Cl(x + A)$. Thereby the assertion follows.

(c) In consequence of Theorem 3.5, x + Int(A) is β -open. Therefore, $x + Int(A) \subseteq Cl(Int(Cl(x + Int(A)))) \subseteq Cl(Int(Cl(x + A)))$. Hence the assertion follows. (d) Obvious.

The analog of Theorem 4.3 is the following:

Theorem 4.4 Let A be any subset of a β -topological vector space E. Then

- (a) $Int(Cl(Int(\lambda A))) \subseteq \lambda Cl(A)$ for each non-zero scalar λ ,
- (b) $\lambda Int(Cl(Int(A))) \subseteq Cl(\lambda A)$ for each non-zero scalar λ ,
- (c) $\lambda Int(A) \subseteq Cl(Int(Cl(\lambda A)))$ for each non-zero scalar λ ,
- (d) $Int(\lambda A) \subseteq \lambda Cl(Int(Cl(A)))$ for each non-zero scalar λ .

Theorem 4.5 For any open set U in a β -topological vector space $E, x + Int(Cl(U)) \subseteq Cl(x + U)$ for each $x \in E$.

Proof. On account of Theorem 4.3(b), $x + Int(Cl(Int(U))) \subseteq Cl(x + U)$. Since U is open, we have $x + Int(Cl(U)) \subseteq Cl(x + U)$. This completes the proof.

Theorem 4.6 For any closed set F in a β -topological vector space E, $Int(x + F) \subseteq x + Cl(Int(F))$ for each $x \in E$.

Proof. In view of Theorem 4.3(d), $Int(x+F) \subseteq x + Cl(Int(Cl(F))) = x + Cl(Int(F))$ because F is closed. Hence the proof is finished.

Definition 4.7 [1] A mapping $f: X \to Y$ from a topological space X to a topological space Y is called β -continuous if for each $x \in X$ and each open set V in Y containing f(x), there exists a β -open set U in X containing x such that $f(U) \subseteq V$.

Theorem 4.8 For a β -topological vector space *E*, the following are true:

(a) the translation mapping $f_x : E \to E$ defined by $f_x(y) = x + y$ for all $y \in E$ is β -continuous,

(b) the mapping $f_{\lambda} : E \to E$ defined by $f_{\lambda}(x) = \lambda x$ for all $x \in E$ is β -continuous, where λ is a fixed scalar.

Proof. (a) Let $y \in E$ and V be an open set in E containing $f_x(y) = x + y$. Then by the definition of β -topological vector spaces, we get U, $U' \in \beta O(E)$ such that $x \in U, y \in U'$ and $U + U' \subseteq V$ and consequently, $f_x(U') \subseteq V$. This proves that f_x is β -continuous.

(b) Let $x \in E$ be an arbitrary. Let W be any open set in E containing λx . Then there exist β -open sets U in K containing λ and V in E containing x such that $U.V \subseteq W$. Now $\lambda V \subseteq U.V \subseteq W \Rightarrow f_{\lambda}(x) \subseteq W$ and hence f_{λ} is β -continuous.

Theorem 4.9 Let E_1 be a β -topological vector space, E_2 be a topological vector space over the same field K. Let $f: E_1 \to E_2$ be a linear map such that f is continuous at 0. Then f is β -continuous everywhere.

Proof. Let x be any non-zero element of E_1 and V be an open set in E_2 containing f(x). Since translation of an open set in topological vector spaces is open, V - f(x) is open set in E_2 containing 0. Since f is continuous at 0, there exists an open set U in E_1 containing 0 such that $f(U) \subseteq V - f(x)$. Furthermore, linearity of f implies that $f(x+U) \subseteq V$. By Theorem 3.5, x+U is β -open and hence f is β -continuous at x. By hypothesis, f is β -continuous at 0. This reflects that f is β -continuous.

Corollary 4.10 Let E be a β -topological vector space over the field K. Let $f : E \to K$ be a linear functional which is continuous at 0. Then the set $F = \{x \in E : f(x) = 0\}$ is β -closed.

Definition 4.11 [2] A topological space X is called β -compact if every cover of X by β -open sets of X has a finite subcover. A subset A of X is said to be β -compact relative to X if every cover of A by β -open sets of X has a finite subcover.

Theorem 4.12 Let A be any β -compact set in a β -topological vector space E. Then x + A is compact for each $x \in E$.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be an open cover of x + A. Then $A \subseteq \bigcup_{\alpha \in \Lambda} (-x + U_{\alpha})$. By hypothesis and Theorem 3.5, $A \subseteq \bigcup_{\alpha \in \Lambda_0} (-x + U_{\alpha})$ for some finite $\Lambda_0 \subseteq \Lambda$. Whence we find that $x + A \subseteq \bigcup_{\alpha \in \Lambda_0} U_{\alpha}$. This shows that x + A is compact. Hence, the proof is complete.

Theorem 4.13 Let A be any β -compact set in a β -topological vector space E. Then λA is compact for each scalar λ .

Proof. If $\lambda = 0$ we are nothing to prove. Assume that λ is non-zero. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be an open cover of λA . Then $A \subseteq \bigcup_{\alpha \in \Lambda} (\frac{1}{\lambda}U_{\alpha})$. In view of Theorem 3.1, $\frac{1}{\lambda}U_{\alpha}$ is β -open and consequently, by hypothesis, $A \subseteq \bigcup_{\alpha \in \Lambda_0} (\frac{1}{\lambda}U_{\alpha})$ for some finite $\Lambda_0 \subseteq \Lambda$. Whence we find that $\lambda A \subseteq \bigcup_{\alpha \in \Lambda_0} U_{\alpha}$. This proves that λA is compact.

Acknowledgements

The authors would like to thank the referee and the anonymous reviewers for their valuable comments and suggestions. The second author is supported by UGC-India under the scheme of NET-JRF.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deep, R. A. Mahmond, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut. Univ. 12 (1983), 77-90.
- [2] Y. A. Abou-Elwan, Some properties of β-continuous mappings, β-open mappings and β-homeomorphism, Middle-East J. of Sci. Res. 19 (12) (2014), 1722-1728.
- [3] H. Z. Ibrahim, α -topological vector spaces, Sci. J. Uni. Zakho. 5 (1) (2017), 107-111.
- [4] M. D. Khan, S. Azam, M. S. Bosan, s-topological vector spaces, J. Linear. Topological. Algebra. 4 (2) (2015), 153-158.
- [5] M. Khan, M. I. Iqbal, On irresolute topological vector spaces, Adv. Pure. Math. 6 (2016), 105-112.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly. 70 (1963), 36-41.
- [7] O. Njastad, On some classes of nearly open sets, Pacific. J. Math. 15 (1965), 961-970.