تعداد نشریات | 418 |
تعداد شمارهها | 10,003 |
تعداد مقالات | 83,617 |
تعداد مشاهده مقاله | 78,292,303 |
تعداد دریافت فایل اصل مقاله | 55,347,053 |
تحلیل رابطه متقابل بین شرکت ارتباطات سیار و مشترکین از طریق بازیهای پویا | ||
مدلسازی اقتصادی | ||
مقاله 3، دوره 7، شماره 22، تیر 1392، صفحه 45-62 اصل مقاله (580.38 K) | ||
نوع مقاله: پژوهشی | ||
نویسنده | ||
امیدعلی عادلی* | ||
دانشجوی دکتری اقتصاد دانشگاه تربیت مدرس | ||
چکیده | ||
شرکت ارتباطات سیار همواره با بخشی از مشترکین تلفن همراه به لحاظ عدم پرداخت به موقع قبض صورت حساب تلفن مربوطه مشکل داشته و چگونگی برخورد با این گروه از مشترکین از حساسیت زیادی برخوردار است. در این مقاله با در نظر گرفتن گزینههای پیشروی شرکت ارتباطات سیار و مشترک نوعی آن و فرضیاتی مبنی بر ترجیحات هر طرف و رتبهبندی این ترجیحات، مسأله از طریق بازیهای پویای با اطلاعات کامل تجزیه و تحلیل شده است. چگونگی انجام عمل، استراتژیهای پیشرو، پیامد هر استراتژی و تعادل بازیهای فرعی و کل بازی از طریق فرم گسترده نشان داده شده و از روش تعادل کامل بازیهای فرعی(SPE)[1] نیز حل شده است. تعادل بازی نشاندهندهی آن است که شرکت ارتباطات سیار بعد از عدم پرداخت هزینه توسط مشترک، تلفن او را به صورت یک طرفه قطع نماید و مشترک نیز به صورت پرداخت و عدم استفاده از خدمات شرکت واکنش نشان خواهد داد. [1] . Sub Game Perfect Equilibrium | ||
کلیدواژهها | ||
بازیهای پویا با اطلاعات کامل؛ شرکت ارتباطات سیار؛ فرم گسترده بازی؛ تعادل بازی فرعی SPE | ||
اصل مقاله | ||
1. مقدمه شرکت ارتباطات سیار هم اکنون یکی از شرکتهای فعال در زمینه ارایه خدمات ارتباطی در ایران است. این شرکت سهم عمده و قابل ملاحظهای از بازار این نوع خدمات را در اختیار دارد. این شرکت هم اکنون بیش از37 میلیون مشترک تلفن همراه دارد (15) که بیشتر آنها کسانی هستند که از سیم کارتهای دایمی این شرکت استفاده مینمایند. مشترکین هر دو ماه یک بار صورت حسابی شامل هزینهی استفاده از خدمات شرکت و به صورت تفکیک هزینههای مربوطه دریافت داشته و باید در یک فاصله زمانی معین نسبت به پرداخت آن اقدام نمایند. اما همواره بخشی از این مشترکین در فاصله زمانی تعیین شده اقدام به پرداخت صورت حسابها نمینمایند. این موضوع برای شرکت مشکل ایجاد نموده و نسبت به آن عکس العمل نشان میدهد. طی سالهای گذشته شرکت یاد شده از گزینههایی همچون قطع یک طرفه تلفن مشترکین و یا مسدود نمودن کامل اقدام نموده و اخیراً نیز از طریق دادن مشوق و ارایه جوایز آنها را تشویق مینماید تا صورت حساب خود را به موقع پرداخت نمایند. هرکدام از این اقدامات در طرف مقابل نیز واکنشهایی را به همراه داشته و با توجه به وضعیت محیط خارجی، عکس العمل هر دو متفاوت خواهد بود. از آنجا که دو تصمیم گیرنده در رابطه با اقدامات خود و طرف مقابل به پیامدهایی دست خواهند یافت. بررسی موضوع در قالب یک بازی امکان پذیر است. تصمیمات بازیکنان به صورت متوالی بوده و در هر مرحله عمل بازیکن رقیب و نیز خود بازیکن مشخص است و با توجه به رتبهبندی گزینههای پیشرو، پیامد هراستراتژی نیز معین است، از اینرو میتوان آن را در قالب بازیهای پویا با اطلاعات کامل مدلسازی و حل نمود. بازی های پویا بازیهایی هستند که در آنها تصمیمات بازیکنان به صورت متوالی است. در این بازیها اگر پیشینهی بازی (انتخاب بازیکنان قبل از بازیکن مورد نظر) معلوم باشد، بازی را بازی پویای با اطلاعات کامل میگویند، یعنی هم پیامد بازی برای هر ترتیب و توالی (دنباله) حرکت بازیکنان و هم پیشینهی بازی برای تمام بازیکنان معلوم میباشد. معمولاً ابزار نمایشی که بتواند عناصر فرم بسط یافته را نشان دهد، درخت بازی[1] است (عبدلی، 1386). اما به طور کلی میتوان این بازیها را به صورت فرم گسترشی[2]، فرم استراتژیک[3] یا نرمال[4] و به صورت جدول پیامدها (فرم ماتریسی) نشان داد. برای تجزیه و تحلیل رفتارهای تصمیم گیرندگان باید ابتدا گزینههای انتخابی آنها و مقدار کمی پیامد هر کدام و در صورتی که گزینهها کیفی باشند، رتبهبندی آنها را مشخص نمود. سپس آنها را به صورت فرم گسترشی و یا اشکال دیگر نمایش این بازیها، نشان داد و در آخر به حل آنها اقدام نمود. برای این بازیها میتوان تعادل نش را تعریف نموده و به دست آورد. در مطالعهی حاضر با توجه به فضای تصمیمگیری و ویژگی رفتار متقابل بازیکنان، مسأله از طریق[5] بازیهای پویا با اطلاعات کامل تجزیه وتحلیل میشود. این مقاله درپنج بخش تنظیم شده است. بعد از مقدمه در بخش دوم به ادبیات موضوع اشاره میشود. در بخش سوم پیشینه تحقیق مورد تجزیه و تحلیل قرارگرفته است. در بخش چهارم به مدلسازی بازی و حل آن پرداخته میشود. در قسمت آخر نیز نتیجهگیری ارایه میشود. 2. ادبیات موضوع بازی، توصیفی از فعالیتهای اقتصادی، اجتماعی و سیاسی افراد است. هر یک از این فعالیتها یا بازیها دارای ساختار و قواعدی هستند که بازیکنان طبق آن به انجام بازی برای رسیدن به اهداف خود میپردازند. این قواعد و ساختار میگویند که هر بازیکن چه اقداماتی میتواند انجام دهد و دلیل آن چیست (سوری، 1386). در دنیای واقعی هر فردی در تصمیم گیری خود با واکنش دیگران مواجه است. پیامد موقعیتهایی که فرد در آن قرار میگیرد از یک طرف بستگی به تصمیمات او و از طرف دیگر به تصمیمات دیگران بستگی دارد. اولین کسی که نظریهی بازیها را مورد بحث قرار داد، جیمز والدگراو[6] (1713) بود. او در مقالهاش راه حل Min-Maxرا برای یک بازی دو نفره ارایه داد و تا زمان اگوستین کورنات که در سال 1838 در مقالهای تحت عنوان «تحقیقاتی در باب اصول ریاضی نظریه ثروت»[7] که نظریهی بازیها را به صورت عمومی دنبال کرد، کسی نظریه بازیها را دنبال نکرد. وان نیومن[8] با نگارش یک سری مقالات در سال 1928 نظریه بازیها را به عنوان یک شاخه مستقل معرفی کرد. البته قبل از آن، بورل[9] ریاضیدان فرانسوی نیز در این زمینهها کارهایی انجام داد. کارهای وان نیومن و اسکار مورگن سترن[10] در کتابی با عنوان «نظریه بازیها و رفتار اقتصادی»[11] در سال 1944 منتشر گردید. در سال 1950 بازی معمای زندانی[12] مطرح شد. در همین زمان جان نش تعریف استراتژی بهینه را تعمیم داد. در دههی 1950 نظریه بازیها به طورگسترده دنبال گردید و بسیاری از موضوعات تکاملی فرم بسط یافته بازی و بازیهای تکراری ارایه شد و کاربرد وسیعی در فلسفه و علوم سیاسی پیدا کرد. در سال 1965 رینهارت سلتن[13] تعادل کامل بازی را مطرح نمود و تعادل نش را گسترش داد. در سال 1967 جان هاریزانی[14] مفهوم اطلاعات کامل و بازی بیزین را وارد عرصه نظریه بازیها کرد (عبدلی، 1386). بازیها را به طرق مختلفی از جمله به صورت ایستا و پویا، بر اساس تعداد بازیکنان (دونفره، سه نفره وn نفره و....)، تعداد استراتژیهای بازی (بازیهای محدود و نامحدود)، ماهیت تابع پرداخت (بازی مجموع صفر و غیر آن) و بر اساس ماهیت مذاکرات پیش از بازی (همسو یا غیر همسو) تقسیم بندی نمود (اینتریلیگیتور، 1387). همچنین روشهای متعددی برای تحلیل و تشریح بازی از جمله به صورت فرم نرمال (استراتژیک)، فرم گسترش یافته و جدول پیامد (ماتریس بازی) وجود دارد. روشهای حل بازیهای ایستا از طریق استراتژیهای غالب و غالب ضعیف، تعادل استراتژیهای مختلط، روش Min-Max و تعادل نش صورت میگیرد. در بازیهای پویا با اطلاعات کامل که ابزار توضیح مقالهی حاضر است، تصمیمات بازیکنان به صورت زنجیرهای بوده و هر بازیکن پیشینهی بازی را میداند و از پیامد هر استراتژی نیز آگاهی دارد. این بازیها را معمولا ًبه صورت فرم گسترشی و از طریق درخت بازی نشان میدهند. پیامد بازیکنان در آخرین شاخه مربوط به هر استراتژی درخت بازی نشان داده میشود. فرض بر این است که عقلانیت[15] بر بازی حاکم است و بازیکنان دارای آگاهی و دانش کامل هستند و این دانش به صورت اطلاعات عمومی است. در بازیهای پویا با توجه به این که یک بازیکن ممکن است در چندگره تصمیمگیری انتخاب خود را انجام دهد. لذا هر استراتژی خالص در این بازیها باید به بازیکن بگوید که در هر مجموعه اطلاعاتی چه عملی را انتخاب کند. بازیهای پویا را به روشهای مختلفی میتوان حل نمود. برای حل از طریق تعادل نش ابتدا باید آن را در فرم استراتژیک نوشته و سپس تعادل نش آن را همانند بازی ایستا پیدا نمود. تعادل در بازیهای پویا با اطلاعات کامل و تمام، به تعادل نش برگشت به عقب معروف است. یعنی تعادلهای نش باید آزمون دیگری را نیز طی کنند. در تعادل نش برگشت به عقب از گرههای نهایی که به یک مجموعه اطلاعاتی تکی بازیکنان مربوط است شروع نموده، تصمیمگیرنده آن گره تصمیمگیری، از میان شاخههایی که از آن گره نشأت گرفته و به گره نهایی ختم میشود و هر شاخه نشاندهندهی یک عمل بازیکن است، شاخهای را انتخاب میکند که بیشترین پیامد را برای او داشته باشد. آن شاخه انتخابی در صورتی که جزیی از مسیر پیوسته متصل به گره اولیه باشد، بخشی از تعادل کلی بازی نیز میباشد. ممکن است برخی از تعادلهای نش استراتژی خالص فرم استراتژیک در برآیندهای برگشت به عقب حذف شوند زیرا آنها تعادل نش تهدیدهای باور نکردنی هستند که کنار گذاشته میشوند یعنی در تعادل نش برگشت به عقب تنها تعادلهای نش مبتنی بر تهدیدهای باورکردنی نشان داده میشوند (عبدلی، 1386). به این معنا که در آن بازی فرعی تعادل وجود دارد، اما با توجه به حاکم بودن عقلانیت بر بازی و این که بازیکن حریف اطلاع دارد که این بازیکن گزینهای را انتخاب خواهد نمود که بیشترین منافع را برای خودش و کمترین منافع را برای حریف داشته باشد، طوری رفتار مینماید که بازی به آن گره کشیده نشود و لذا آن انتخاب یا شاخه، جزیی از مسیر پیوسته بازی نخواهد بود. روش دیگر نشان دادن تعادل از طریق تعادل کامل بازیهای فرعی(SPE) است. رینهارت زلتن(1965) اولین کسی بود که نشان داد تعادلهای نش که در آن تهدیدهای باور نکردنی وجود دارد در بسیاری موارد نمیتوانند رفتار بازیکنان را پیشبینی کنند و لذا ایدهای که براساس آن تعادلهای نش مبتنی بر تهدیدهای باور نکردنی کنار گذاشته میشود، به SPE معروف است. در این ایده، کل بازی در فرم بسط یافته به چند بازی فرعی بر اساس یک سری اصول تفکیک میشود که گرهها و شاخههای بازی فرعی زیر مجموعه بازی اصلی میباشد و لذا خود بازی فرم بسط یافته بوده و بخشی از بازی اصلی را تشکیل میدهد. 3. پیشینه تحقیق بسار و همکاران[16](1981) استراتژیهای تعادلی در بازیهای پویا با چند سطح سلسله مراتب را مورد بررسی قرار داد و در مطالعه خود تعادل غیرهمکارانه را در یک بازی پویا با سه بازیکن و سه سطح سلسله مراتبی بررسی نمود. ایشان ابتدا یک تعریف کلی از حل تعادل چند سطحی را برای بازیکنانی که در سطوح بالای سلسله مراتبی نیستند ارایه نمود. سپس مجموعه شرایط کافی را برای استراتژیهای سه گانه اثبات نمود. در این نوع بازی، بازیکنی که در بالای سطح قرار میگیرد، دو بازیکن دیگر را مجبور به قبول شرایطی میکند که تابع هزینه او (بازیکن قرارگرفته در بالای سطح) را حداقل نمایند. همچنین بازیکن قرارگرفته در سطح دوم، بازیکن سطح آخر را مجبور میکند تا تابع هزینه او(بازیکن قرارگرفته در سطح دوم) را حداقل نماید (بساری، 1982). بیتوسکی[17](1982) مفهوم تعادل همکاری را در بازیهای پویا مورد بررسی قرارداد. او یک راهحل تعادلی را برای بازیهای پویا که در آنها بازیکنان با هم در ارتباط هستند اما برای قرارداد موافقت نمینمایند، مورد بررسی قرار داده و اشاره میکند که بر خلاف بازیهای ایستا که در آنها امکان تبانی وجود ندارد، در بازیهای پویا امکان همکاری بین بازیکنان وجود دارد (بیتوسکی، 1982). نواک و همکاران[18] (2002) در مقالهای با عنوان «اخاذی به عنوان مانعی برای رشد اقتصادی: تحلیلهای بازی پویا» با استفاده از تحلیل بازی دیفرانسیلی به مطالعه تعامل استراتژیک بین یک گروه جنایتکار که اقدام به اخاذی پول از فروشگاههای محلی نموده، از یک طرف و نیروهای پلیس از طرف دیگر پرداختند. هدف آنان از انجام مطالعه تعیین این موضوع بوده که آیا رشد ذخیره سرمایه صاحبان فروشگاههای محلی با وجود این اخاذیها، استمرار خواهد داشت یا فعالیتهای جنایی منجر به رکود اقتصاد محلی میشوند. آنها تعادل کامل مارکوف را به منظور جواب به این سؤال و چند کاربرد سیاستی در مناطقی که تحت تأثیر این اخاذیها بودند، مورد استفاده قرار دادند. نتیجه حاکی از آن بوده است که اگر مردم در مناطقی که فعالیتهای اخاذی صورت میگیرد، از این فعالیتها پشتیبانی ننموده و تقاضای بخش خصوصی برای کار بالا باشد، ذخیره سرمایه صاحبان فروشگاههای محلی، با وجود فعالیتهای فوق، به رشد خود ادامه میدهد. اگر مازاد عرضه کار در مناطقی که فعالیتهای جنایی وجود دارد بالا باشد، نیروهای پلیس باید افزایش یافته و بیشتر هزینه نمایند، این کار از رکود در منطقه جلوگیری نموده و در بلندمدت نیز یک استراتژی بهینه است (ای نواک، 2002). هوری و همکاران[19] (2010) اثرات بیرونی مصرف را در یک مدل رشد درونزا با انباشت سرمایه زیاد و با ویژگی رشد متوازن را در قالب بازیهای پویا بررسی نمودند آنها نشان دادند که اگر عوامل[20] اقتصادی به شدت مصرف دیگران را تحریک نمایند، نرخ رشد در تعادل نش بازخوردی[21] میتواند بزرگتر از تعادل نش با حلقه باز[22] باشد و این موضوع ارتباطی به مسأله چشم و هم چشمی مصرف ندارد (کی هوری،2010). ابریشمی و گلستانی (1383) در مقالهای رفتار دو سازمان اوپک وOECD را به عنوان بازیگران اصلی و تأثیرگذار در بازار جهانی در قالب یک بازی تکرار شونده متناهی انحصار دو جانبه مورد بررسی قرار داده و با استناد به راه حل نقطه شلینگ[23] نشان دادند که در این بازی در نتیجه بکارگیری استراتژیهای سازگار و بلندمدت از جانب هر دوی این بازیگران، اوپک به عنوان یک چانه زن ضعیف حضور یافته و در مقایسه با دولت های عضو OECD سهم کمتری از منافع را به خود اختصاص داده است (ابریشمی، 1383). عبدلی و لهراسبی (1388) در مقالهای به بررسی رفتار اوپک طی دورهی زمانی ژانویه 1973 تا سپتامبر 2008 پرداختند. آنها با استفاده از نظریه بازیها بر اساس وابستگی متقابل بنگاهها، از طریق مدل رگرسیون (روش لاجیت) فرضیه رقابتی در مقابل فرضیه کارتل سازگار را مورد آزمون قرار دادند. نتایج نشان دهندهی آن بوده که نه تنها اوپک به عنوان یک کارتل ایدهآل نبوده، بلکه حتی نسبت به تولیدکنندگان رقابتی نیز عملکرد ضعیفتری داشته است (قهرمان عبدلی، 1388). عبدلی و ناخدا (1388) در مقالهای به بررسی پایداری اوپک با رویکرد نظریه بازیهای تکراری پرداختند. ایشان ابتدا مدل ساده چانه زنی و اجرای فیرون را ارایه نمودند که در آن بیصبری، منبع قدرت چانه زنی میباشد و پیامد این مرحله به شکل معمای زندانی بوده است. سپس نشان داده شده که چگونه مدل به مسأله تقسیم منافع با در نظرگرفتن قدرت چانه زنی و افقهای زمانی پاسخ میدهد. آنها اطلاعات آماری50 ساله را مورد استفاده قرار داده و به این نتیجه رسیدهاند که کشورهایی که آینده را به سختی تنزیل میکنند تمایل به دریافت سهمیه نفت بیشتری دارند (ناخدا، 1388). 4. مدلسازی بازی شرکت ارتباطات سیار بیش از 37 میلیون مشترک تلفن همراه دارد و عمده خدمات ارتباطی را در ایران ارایه مینماید. در کنار این مسأله شرکت ایرانسل به عنوان رقیب او در حال فعالیت است و اپراتور سوم نیز اخیراً فعالیت خود را شروع نموده است. با تحویل قبض پرداخت به مشترک تلفن همراه، او یا صورت حساب کارکرد خود را در مهلت مقرر پرداخت میکند و یا این که در موعد مربوطه آن را پرداخت نمینماید. در حالت دوم بازی بین مشترک و شرکت ارتباطات سیار شروع می شود و شروع کننده بازی نیز مشترک میباشد. برای شرکت ارتباطات سیار بهترین گزینه آن است که مشترکین در موعد تعیین شده صورت حساب خود را بپردازند. اگر انتخابهای آنها را رتبهبندی نماییم به این انتخاب برای مشترک عدد 1 برای شرکت عدد 9 را اختصاص میدهیم. در صورت عدم پرداخت صورت حساب توسط مشترک، شرکت ارتباطات سیار سه گزینه پیشرو دارد. قطع یک طرفه، قطع دو طرفه و گزینه سوم نیز آن است که شرکت ارتباطات سیار هیچ اقدامی انجام نداده و تلفن مربوطه را قطع ننماید. در مقابل مشترک نیز برای حالتهایی که شرکت ارتباطات سیار اقدام به مسدود نمودن یک طرفه یا دو طرفه و یا عدم قطع، سه گزینه را در مقابل خود دارد. پرداخت و ادامه استفاده از تلفن، پرداخت و عدم استفاده از تلفن به مدت نامعلوم و یا این که صورت حساب را پرداخت ننماید. برای حالتی که شرکت ارتباطات سیار با وجود عدم پرداخت به موقع صورت حساب، تلفن مشترک را قطع ننموده و بازی به مرحله بعدی کشیده میشود نیز مشترک دارای دو گزینه به صورت پرداخت یا عدم پرداخت خواهد بود. که در صورت پرداخت، بازی تمام میشود و در صورت عدم پرداخت، بازی ادامه یافته و شرکت ارتباطات سیار تنها دارای یک گزینه و آن هم قطع تلفن همراه مشترک خواهد بود. سپس مشترک همانند حالت قبل دارای سه گزینه به صورت پرداخت و ادامه استفاده از تلفن همراه، پرداخت و عدم استفاده و عدم پرداخت خواهد بود. با فرض این که شرکت ارتباطات سیار در مرحله دوم، در صورت عدم پرداخت صورت حساب تلفن مشترک مورد نظر را به صورت دو طرفه قطع مینماید. در این مرحله یا بازی تمام میشود یعنی مشترک صورت حساب را پرداخت نموده است و یا این که مشترک صورت حساب را پرداخت ننموده و بازی ادامه مییابد. لذا شرکت ارتباطات سیار تنها یک گزینه پیشرو دارد وآن هم قطع دو طرفه تلفن همراه مشترک است. در مرحله دوم مشترک تلفن همراه نیز دو گزینه دارد به این صورت که یا صورت حساب را پرداخت مینماید یا این که همچنان قبض صورت حساب را پرداخت نمینماید. اما مساله دیگری که لازم است به آن توجه شود آن است که ممکن است مشترک تلفن همراه واکنش نشان داده و از اقدامات شرکت ارتباطات سیار آزرده شده و به همراه هر کدام از انتخابهای خود یعنی پرداخت یا عدم آن، برای مدت نامعلومی از تلفن همراه خود استفاده ننماید. این مساله به دلیل آن است که در مقابل او کالای جایگزین وجود دارد. زیرا شرکت ایرانسل و اپراتور سوم به عنوان رقیب آن دارای محصولاتی هستند که هر چند همگن نبوده اما به هر صورت جانشینهای نزدیکی میباشند. لذا برای شرکت ارتباطات سیار در صورتی که مشترک مربوط به همراه پرداخت صورت حساب یا عدم آن، از تلفن همراه استفاده ننماید این به منزله کاهش درآمد است و با توجه به تقبل هزینههای بالاسری تجهیزات، کاهش سود را به دنبال دارد. انتخابهای پیشروی مشترک در ابتدا عبارت اند از: 1- مشترک صورت حساب خود را به موقع پرداخت نماید و وضعیت عادی حاکم باشد (C). 2- مشترک صورت حساب خود را به موقع پرداخت ننماید(D ). اگر مشترک گزینه دوم را انتخاب کند در واقع بازی شروع میشود. در این حالت شرکت ارتباطات سیار در مجموعه اطلاعاتی b1 قرارگرفته گزینههای زیر را پیشروی خود خواهد داشت: 1- تلفن همراه مشترک به صورت یک طرفه قطع شود(E). 2- تلفن همراه مشترک به صورت دو طرفه قطع شود(F). 3- تلفن مشترک برای یک دوره دیگر برقرار باشد(G). آنگاه مشترک نوعیِ تلفن همراه دارای سه مجموعه اطلاعاتی خواهد بود ( ، ، ) که در هرکدام چندین گزینه خواهد داشت. در صورت قطع یک طرفه تلفن همراهش در مجموعه اطلاعاتی a2 قرار میگیرد. گزینههای این مجموعه اطلاعاتی به صورت زیر خواهد بود: - قبض خود را پرداخت نماید و به استفاده از تلفن همراه ادامه دهد (C). - قبض خود را پرداخت نماید و از تلفن همراه استفاده ننماید (H). -قبض خود را پرداخت ننماید (D). در دو گزینه از این مجموعه اطلاعاتی بازی پایان مییابد (پرداخت قبض) که با انتخاب عمل C پیامد بازی برای مشترک 5 و برای شرکت ارتباطات سیار 7 خواهد بود. با انتخاب عمل H پیامد بازی برای مشترک 9 و برای شرکت ارتباطات سیار 4 خواهد بود. در گزینه سوم(D) بازی ادامه یافته و وارد مرحله بعد میشود. در این مرحله اگر بازیکن در مجموعه اطلاعاتی قرار گیرد سه گزینه در پیشرو داشته و بازی به اتمام میرسد. با انتخاب گزینه C (پرداخت صورت حساب و ادامه استفاده از تلفن همراه) پیامد بازی برای مشترک و شرکت ارتباطات سیار به ترتیب 3 و 6 خواهد بود. با انتخاب گزینه H (پرداخت صورت حساب و عدم استفاده از تلفن همراه) پیامد بازی برای مشترک و شرکت ارتباطات سیار به ترتیب 7 و 3 خواهد بود و با انتخاب گزینه D (عدم پرداخت) پیامد بازی برای مشترک و شرکت ارتباطات سیار به ترتیب 6 و 1 خواهد بود. در صورت قرار گرفتن مشترک در مجموعه اطلاعاتی (انتخاب گزینه G توسط شرکت یعنی عدم قطع تلفن همراه در مرحله اول) مشترک دارای دو گزینه C و D یعنی پرداخت یا عدم پرداخت خواهد بود که در صورت انتخاب C بازی به اتمام رسیده و پیامد مشترک و شرکت ارتباطات سیار به ترتیب برابر با 2 و 8 خواهد بود. در مرحله آخر(طبق فرض بازی) شرکت ارتباطات سیار دارای دو گزینه مشابه حاصل از انتخاب های مشترک در مجموعه اطلاعاتی و که به صورت عدم پرداخت صورت حساب بوده است، میباشد و اقدام به قطع دو طرفه تلفن همراه مشترک مینماید. در این مرحله مشترک در مجموعه اطلاعاتی یا قرارگرفته و در مقابل هرکدام از آنها دارای سه گزینه به صورت پرداخت قبض صورت حساب و ادامه استفاده از تلفن همراه (C)، پرداخت قبض صورت حساب و عدم استفاده از تلفن همراه (H) و عدم پرداخت قبض صورت حساب (D) خواهد بود. پیامد بازی با انتخاب گزینه C برای مشترک و شرکت به ترتیب برابر با 4 و 5 و پیامد ناشی از انتخاب گزینه Hبرای مشترک و شرکت به ترتیب برابر با 8 و 2 و پیامد ناشی از انتخاب گزینه Dبرای مشترک و شرکت به ترتیب برابر با 6 و 1 خواهد بود. شرکت ارتباطات سیار با مدلسازی واکنش و رفتار یک مشترک میتواند از آن برای چگونگی رفتار با همه مشترکین استفاده نماید. این موضوع با فرض ثبات تکنولوژی و یا این که تغییر تکنولوژی، روی رفتار مشترکین اثر چندانی ندارد، بیان میگردد. بازی را در فرم استراتژیک میتوان به صورت زیر نشان داد: - مجموعه بازیکنان: (1) که A معرف مشترک و B معرف شرکت ارتباطات سیار است. - مجموعه استراتژی بازیکنان:
(2) مجموعه ترکیب استراتژیهای بازیکنان به صورت زیر است:
(3) پیامد بازیکنان بستگی به انتخابهای آنها دارد. پیامد تمامی ترکیبهایی که بازیکنان اول (مشترک) گزینه C را انتخاب مینماید به صورت (9، 1) میباشد. این بهترین مطلوب برای شرکت است که بالاترین رتبه را در بین گزینههای او داشته و امتیاز 9 به آن اختصاص داده شده است. پیامد این ترکیب برای مشترک 1 است زیرا او صرفاً صورتحساب خود را به موقع پرداخت نموده است. با توجه به این که هر استراتژی مشترک دارای 6 عمل یا گزینه است و در مقابل شرکت نیز سه عمل یا گزینه دارد، جدول پیامد بازی ترکیبات زیادی است. پیامد بازیکنان به صورت زیر خواهد بود:
……….. (4) ……….
با توجه به طولانی بودن جدول پیامدها از یک طرف و حل سادهتر بازی از طریق فرم بسط یافته، ابتدا بازی را در این شکل نوشته و سپس از طریق تعادل نش برگشت به عقب و تعادل کامل بازیهای فرعی حل می شود. فرم بسط یافته بازی به صورت زیراست:
نمودار1. فرم بسط یافته بازی بین شرکت ارتباطات سیار و مشترک
با توجه به این که مشترک دارای 6 مجموعه اطلاعاتی است و هر استرانژی او شامل 6 عمل خواهد بود و لذا ترکیب آنها باعث خواهد شد تا تعداد استراتژیها بسیار زیاد باشد. به همین دلیل جدول پیامد بازی طولانی خواهد بود و از طرفی نیاز به آن نیز نیست زیرا میتوان تنها از روی فرم بسط یافته تعادل SPE بازی را به دست آورده و آن را حل نمود (عبدلی، 1386). با توجه به فرم بسط یافته بازی به صورت نمودار(1) این بازی دارای 13 مسیر میباشد. این مسیرها به همراه پیامد بازیکنان به صورت زیر میباشند:
(5)
هر کدام از این بازیهای فرعی دارای تعادل مختص خود است. مثلاً اگر بازی به مرحله آخر کشیده شود یعنی مشترک در مجموعههای اطلاعاتی یا قرار گیرد، او گزینه H یعنی پرداخت صورت حساب و عدم استفاده از تلفن همراه را بر میگزیند. همچنین اگر بازی در مرحله اول با استراتژی F یعنی قطع دو طرفه شرکت روبرو شود، او در مجموعه اطلاعاتی قرار گرفته و باز هم با گزینه H یعنی پرداخت صورت حساب و عدم استفاده از تلفن همراه واکنش نشان میدهد. در مرحله قبل از مجموعههای اطلاعاتی و شرکت تنها یک گزینه و آن هم قطع دو طرفه تلفن همراه مشترک دارد. در نمودار (2) هر کدام از شاخههای گرههای نهایی شاخه انتخابی بازیکن B که بیشترین پیامد برای او دارد به صورت پر رنگ نشان داده شده است که تعادل بازی فرعی را نشان میدهد. در صورتی که این شاخه یکی از شاخههای مسیر پیوسته باشد جزیی از تعادل کلی خواهد بود. ملاحظه میشود که تنها مسیر پیوسته (DEH) به صورت پررنگ نشان داده شده است و لذا تعادل کلی بازی را نشان میدهد. نمودار2. تعادل بازیهای فرعی و کل بازی
از آنجا که عقلانیت بر بازی حاکم است شرکت و مشترک رفتارهای طرف دیگر را به درستی حدس زده و فرض مینمایند رقیب آن گزینهای را انتخاب میکند که بیشترین منفعت برای خودش و کمترین را برای حریف داشته باشد، میتوان گفت روش حداکثر- حداقلها را در نظر میگیرند. با توجه به تعادل بازیهای فرعی میتوان گفت که تعادل کل بازی به صورتی است که شرکت تلفن همراه مشرکینی که به موقع قبض صورت حساب خود را پرداخت نمینمایند، را به صورت یک طرفه قطع مینماید و مشترکین نیز گزینه پرداخت و عدم استفاده را انتخاب میکنند. البته این موضوع با فرض وجود جانشین نزدیک خدمات ارتباطی موبایل قابل توجیه است. منافع شرکت از طریق گروهی از تماس گیرندگان که با مشترک مورد نظر ارتباط برقرار نموده و از خدمات این شرکت استفاده مینمایند، تأمین میگردد و منافع مشترک نیز از طریق تماسهای دیگران تأمین میگردد زیرا با پرداخت تنها هزینه آبونمان دارای یک تلفن یک طرفه خواهد بود. اما شرکت میتواند یک یا چند مورد از قیمتهای مربوط به استفاده از خدمات خود را (مانند ارسال پیامک، هزینه جابجایی یا استفاده از GPRS و ...) کاهش دهد تا بدین طریق محصولات خود را از رقیبان متمایز نماید. گزینه دیگری که میتواند مطلوب این شرکت باشد، محاسبه صورت حسابها به صورت ماهانه به جای هر دو ماه یک بار است، زیرا به طور معمول واکنش افراد نسبت به یک محرک خاص به صورت تدریجی از حساسیت کمتری برخوردار است، یک مبلغ چنانچه طی دو نوبت به جای یک نوبت دریافت شود، واکنش منفی کمتری را به دنبال دارد.
6. نتیجهگیری در این مطالعه به تجزیه و تحلیل ارتباط بین شرکت ارتباطات سیار و مشترکین آن از طریق نظریه بازیها پرداخته شد. با توجه به متوالی بودن تصمیمات بازیکنان در هر مرحله تصمیمگیری و معلوم بودن پیشینهی بازی و رتبهبندی ترجیحات خود و رقیب بر اساس فرض عقلانیت مسأله در قالب بازی پویا با اطلاعات کامل بررسی شد. ابتدا فرم گسترشی بازی نشان داده شد، سپس بازیهای فرعی مشخص گردیده و از این طریق تعادل کل بازی نیز تعیین گردید. تعادل بازی نشاندهندهی آن بود که شرکت بعد از عدم پرداخت هزینه توسط مشترک، تلفن او را به صورت یک طرفه قطع نماید و مشترک نیز به صورت پرداخت و عدم استفاده از خدمات شرکت واکنش نشان خواهد داد. در مجموع نتایج حاکی از آن است که شرکت ارتباطات سیار باید به دنبال راه کارهایی در رابطه با کاهش هزینه انواع خدمات، بررسی سوابق پرداختی مشترکین و دستهبندی آنان و در نظرگرفتن امتیازاتی برای این مشترکین بوده و کمترگزینه مقابله به مثل و قطع تلفن مشترکین را مد نظر داشته باشد. [1] . Game Tree [2] . Extensive Form [3] . Strategic Form [4] . Normal Form [7]. Researches into The Mathematical Principal of The Theory of Wealth [8]. John Von Neumann [9]. Borel [10] .Oskar Morgenstern [11] .The Theory of Games and Economic Behavior [12] .Prisoners Dilemma [13] .Renhard Selten [14] .John Harsanyi [15]. Rationality [16] . Basar [17] . B. Toewiski [18] . Novak [19] . Hori [20] . Agents [21] . Feedback Nash Equilibrium [22] . Open-Loop Nash Equilibrium [23]. Shilling Point Solution | ||
مراجع | ||
منابع - ابریشمی، حمید، گلستانی، شهرام (1383). بررسی رفتار دو سازمان اوپک وOECD در قالب بازی انحصار دوجانبه و چگونگی تقسیم منافع حاصل از تجارت نفت در بین آنها. فصلنامه پژوهشنامه بازرگانی، 8 (31): 89-59. - اینتریلیگیتور. ام. دی (1387). بهینه سازی ریاضی. انتشارت دانشگاه شهید بهشتی، تهران. - سوری، علی (1386). نظریه بازیها وکاربردهای اقتصادی. انتشارات دانشکده علوم اقتصادی، تهران. - سوری، علی (1386). اقتصاد ریاضی، روشها وکاربردها. انتشارات سمت، تهران. - عبدلی، قهرمان، لهراسبی پیده، لقمان (1388). بررسی رفتار تولید جبرانی و وابستگی متقابل میان تولیدکنندگان و آزمون آن در بازار جهانی نفت، تحقیقات اقتصادی، 44(88): 170-145. - عبدلی، قهرمان، ناخدا ، محمد جواد (1388). کاربرد نظریه فیرون در بررسی پایداری اوپک: با رویکرد نظریه بازیهای تکراری. مطالعات اقتصادانرژی، 6 (20): 56- 33. - عبدلی، قهرمان (1386). نظریه بازیها وکاربردهای آن (بازیهای ایستا و پویا با اطلاعات کامل)، انتشارات جهاد دانشگاهی، تهران.
- Basar, T., & Olsder, G. J. (1982). Dynamic noncooperative game theory. New York: Academic Press. -Dawid, H., & Feichtinger, G., & Novak, A. (2002). Extortion as an obstacle to economic growth: A dynamic game analysis. European Journal of Political Economy, 18(3): 499–516
-Eran, S., & Eilon, S. (2004). Zero-sum dynamic games and a stochastic variation of Ramsey’s theorem. Journal of the Stochastic Processes and their Applications, 112(2): 319 – 329
-Hori, K., & Shibata, A. (2010). Dynamic game model of endogenous growth with consumption externalities. (English). J. Optim. Theory Appl. 145(1): 93-107 -Tolwenski, B. (1982). A concept of cooperative equilibrium for dynamic games. Journal of the automatica, 18(4): 431- 441 | ||
آمار تعداد مشاهده مقاله: 2,161 تعداد دریافت فایل اصل مقاله: 1,597 |