تعداد نشریات | 418 |
تعداد شمارهها | 10,003 |
تعداد مقالات | 83,616 |
تعداد مشاهده مقاله | 78,251,140 |
تعداد دریافت فایل اصل مقاله | 55,303,891 |
The hybrid approach based on genetic algorithm and neural network to predict financial fraud in banks | ||
International Journal of Information, Security and Systems Management | ||
مقاله 6، دوره 6، شماره 1، شهریور 2017، صفحه 641-648 اصل مقاله (331.58 K) | ||
نوع مقاله: Others | ||
نویسندگان | ||
Afsaneh Azimi1؛ Majid Noor Hosseini2 | ||
1Islamic Azad University, Electronic Unit, Department of Computer Engineering, Tehran, Iran | ||
2Amirkabir University of Technology, Department of Computer Engineering and Information Technology, ,Tehran, Iran | ||
چکیده | ||
Audit has become an essential topic in the world because there is much evidence about deliberate manipulations in the reports. One of the concerns in the field of audit is discovery and search of the financial statements and the high volume of bulk data. This study tried to suggest the appropriate method to detect these frauds due to the data which has been available and a proposed algorithm. Research data of the Greek companies have been used and the results of output show that about 83 percent correct prediction are shown in the output. | ||
کلیدواژهها | ||
Banks؛ financial fraud؛ neural network and genetic algorithm | ||
آمار تعداد مشاهده مقاله: 790 تعداد دریافت فایل اصل مقاله: 578 |