تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,621 |
تعداد مشاهده مقاله | 78,331,684 |
تعداد دریافت فایل اصل مقاله | 55,377,890 |
Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film | ||
Iranian Journal of Catalysis | ||
مقاله 2، دوره 7، شماره 3، آذر 2017، صفحه 187-192 اصل مقاله (964.22 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Ali Ehsani* 1؛ Mojtaba Hadi1؛ Elaheh Kowsari2؛ Samira Doostikhah3؛ Javad Torabian4 | ||
1Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran. | ||
2Department of Chemistry, Amirkabir University of Technology, Tehran, Iran. | ||
3Department of Chemistry, Payame Noor University, Iran. | ||
4Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran. | ||
چکیده | ||
In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polymer backbone to obtain Ni-FGO-POAP/ graphite electrode. Surface morphology of composite was characterized by scanning electron microscopy. The electrochemical performance of Ni-FGO-POAP composite electrodes was investigated by cyclic voltammetry and Chronoamperometry. Compared with Ni- POAP, a Ni-FGO-POAP electrode shows a higher catalytic performance in the electrocatalytic oxidation of ethanol. Under the CA regimes the reaction followed a Cottrellian behavior. Developing a simple and green route for synthesis of FGO-POAP and long life cycle and stability of nanocomposite are main important factor in presented work. | ||
کلیدواژهها | ||
POAP؛ Nanocomposite؛ graphene؛ Electrocatalyst؛ Ethanol | ||
مراجع | ||
[1] H. Mohammad Shiri, A. Ehsani, J. Colloid interface Sci. 484 (2016) 70-76. [2] A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Torabian, S. Kazemi, J. Colloid interface Sci. 478 (2016) 181-187. [3] M. Naseri, L. Fotouhi, A. Ehsani, H. Mohammad Shiri, J. Colloid Interface Sci. 484 (2016) 308-313. [4] J.S. Wu, W. Pisula, K. Mullen, Chem. Rev. 107 (2007) 718-747. [5] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277–2282. [6] M. Naseri, L. Fotouhi, A. Ehsani, S. Dehghanpour, J. Colloid Interface Sci. 484 (2016) 314-319. [7] X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8 (2008) 323-327. [8] H. Heli, H. Yadegari, A. Jabbari, Mater. Chem. Phys. 134 (2012) 21–25. [9] J. Shabani-Shayeh, A. Ehsani, MR. Ganjali, P. Norouzi, B. Jaleh, Appl. Surf. Sci. 353 (2015) 594-598. [10] N. Salehifar, J. Shabani Shayeh, S.O. Ranaei Siadat, K. Niknam, A. Ehsani, S. Kazemi Movahhed, RSC Adv. 5 (2015) 96130-96137. [11] J. Shabani-Shayeh, A. Ehsani, A. Nikkar, P. Norouzi, M.R. Ganjali, M. Wojdyla, New. J. Chem, 39 (2015) 9454-9460. [12] H. Mohammad Shiri, A. Ehsani , J. Shabani Shayeh, RSC Adv. 5 (2015) 91062–91068. [13] A. Ehsani, E. Kowsari, M. Dasti Najafi, R. Safari, H. Mohammad Shiri, J. Colloid Interface Sci. 500 (2017) 315-320. [14] E. Kowsari, A. Zare, V. Ansari, Int. J. Hydogen Energy 40 (2015) 13964-13978. [15] C. Xu, X. Liu, J. Cheng, K. Scott. J. Power Sources 274 ( 2015) 922-927. [16] A.A. Mikhaylova, O.A. Khazova, V.S. Bagotzky, J. Electroanal. Chem. 480 (2000) 225-232. [17] P.Gajendran, R. Saraswathi. J. Solid State Electrochem. 17 (2013) 2741-2747. [18] J.B. Raoof, S.R. Hosseini, S. Rezaee, J. Mol. Liquid 200 (2014) 196-204. [19] C. Fan, D.L. Piron, A. Sleb, P. Paradis, J. Electrochem. Soc. 141 (1994) 382-387. [20] I.A. Raj, K.I. Vasu, J. Appl. Electrochem. 20 (1990) 32-38. [21] M.A. Casadei, D. Pletcher, Electrochim. Acta 33 (1988) 117-120. [22] R. Ojani, J.B. Raoof, S. Fathi, Electrochim. Acta. 54 (2009) 2190-2196. [23] W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339-1339. [24] M.H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Electrochim. Acta 147 (2014) 572–581. [25] A. Ehsani, A. Vaziri-Rad, F. Babaei, H. Mohammad Shiri, Electrochim. Acta 159 (2015) 140-148. [26] A. Ehsani, M.G. Mahjani, F. Babaei, H. Mostaanzadeh, RSC Adv. 5 ( 2015) 30394-30404. [27] A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Prog. Org. Coat. 69 (2010) 510-516. [28] M. Jafarian, M.G. Mahjani, H. Heli, F. Gobal, H. Khajehsharifi, M.H. Hamedi, Electrochim. Acta. 48 (2003) 3423-3429. [29] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Ed. Wiley, New York, 2001. [30] F. Alidusty, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy. 41 (2016) 6288-6299. [31] M.S. Tohidi, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy. 41 (2016) 8881-8892. | ||
آمار تعداد مشاهده مقاله: 641 تعداد دریافت فایل اصل مقاله: 414 |