تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,621 |
تعداد مشاهده مقاله | 78,331,652 |
تعداد دریافت فایل اصل مقاله | 55,377,876 |
Time Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran | ||
Journal of Industrial Strategic Management | ||
مقاله 4، دوره 2، شماره 2، مرداد 2017، صفحه 67-76 اصل مقاله (1.28 M) | ||
نوع مقاله: Original Article | ||
نویسندگان | ||
Arash Farrokhi1؛ Reza Hassanzadeh* 2 | ||
1Department of Industrial Engineering, University College of Ayandegan, Tonekabon, Iran | ||
2Department of Industrial Engineering, University College of Rouzbahan, Sari,, Iran, Iran | ||
چکیده | ||
Considering the fact that natural gas is a widely used energy source, the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. The goal of the study is to select the best model for the prediction of gas consumption. To achieve the goal time series analysis are used. The findings indicate that ARIMA (0, 1, 0) is the best model for the prediction of annual gas consumption, while SARIMA (1, 0, 0) (1, 1, 0) for the prediction of monthly gas consumption | ||
کلیدواژهها | ||
Forecast Gas؛ Consumption؛ ARIMA؛ SARIMA | ||
آمار تعداد مشاهده مقاله: 311 تعداد دریافت فایل اصل مقاله: 192 |