تعداد نشریات | 418 |
تعداد شمارهها | 9,997 |
تعداد مقالات | 83,557 |
تعداد مشاهده مقاله | 77,666,812 |
تعداد دریافت فایل اصل مقاله | 54,719,232 |
Using design of experiments approach and simulated annealing algorithm for modeling and Optimization of EDM process parameters | ||
Journal of Advanced Materials and Processing | ||
مقاله 5، دوره 6، شماره 3، آذر 2018، صفحه 45-56 اصل مقاله (827.44 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Masoud Azadi Moghaddam* 1؛ Farhad Kolahan2؛ Meysam Beytolamani2 | ||
1mechanical engineering, ferdowsi university of mashhad | ||
2Ferdowsi University of Mashhad | ||
چکیده | ||
The main objectives of this research are, therefore, to assess the effects of process parameters and to determine their optimal levels machining of Inconel 718 super alloy. gap voltage, current, time of machining and duty factor are tuning parameters considered to be study as process input parameters. Furthermore, two important process output characteristic, have been evaluated in this research are material removal rate (MRR) and surface roughness (SR). Determination of a combination of process parameters to minimize SR and maximize MRR is the objective of this study. In order to gather required experimental data, design of experiments (DOE) approach, has been used. Then, statistical analyses and validation experiments have been carried out to select the best and the most fitted regression models. In the last section of this research, simulated annealing (SA) algorithm has been employed for optimization of the EDM process performance characteristics. A set of verification tests is also performed to confirm the accuracy of the proposed optimization procedure in determining the optimal levels of machining parameters. The results indicate that the proposed modeling technique and SA algorithm are quite efficient in modeling and optimization of EDM process parameters. | ||
کلیدواژهها | ||
Electrical Discharge Machining (EDM)؛ Inconel 718 super alloy؛ Optimization؛ Simulated annealing (SA) algorithm؛ Analysis of Variance (ANOVA) | ||
آمار تعداد مشاهده مقاله: 488 تعداد دریافت فایل اصل مقاله: 256 |