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Abstract
In recent years, formal methods have been usednasmgortant tool for

performance evaluation and verification of a widnge of systems. In the view
points of engineers and practitioners, howeverdtare still some major difficulties
in using formal methods. In this paper, we introglug new formal modeling
language to fill the gaps between object-orienteshpamming languages (OOPLS)
used by engineers and the formalisms used for atratuand verification purposes.
We propose the syntax and semantics of a new afgjiectted modeling language
for discrete-event systems called RayLang. We tiesigned the syntax of RaylLang
similar to OOPLs. In RayLang models, objects tha imstantiated from classes,
run concurrently and can communicate with each oty requesting services.
Every object in RayLang models has some interad¢ stariables and some service
handlers for executing the requests of other objaste have shown that Markovian
RayLang models can be transformed into continuous-Markov chains (CTMCs)
and then can be solved by existing solution teclesgFor modeling, discrete-event
simulation and analytic solution of RayLang models, have implemented these
models in the PDETool framework.

Keywords: Formal Modeling Language, Object-Oriented ModelinBiscrete-Event
Systems, Performance and Dependability Evaluation

1. Introduction

In spite of the recent successful application em@ methods, there are still clear
needs of further research to develop and designfoemalisms. In many notations, it is
not easy to understand the meaning and propertidsecsymbols and how they may
and may not be manipulated, and to gain fluencyusimg them, to express new
problems, solutions and proofs [5]. The major peob is the difference in the
abstraction level and the existing gap betweenpitogramming languages used by
programmers and software engineers and the modelrgyages used for performance
evaluation and verification purposes. Most of thesting formalisms cannot be easily
used by software engineers. On the other handuéaygs used by software engineers
cannot be used directly for performance and depelityaevaluation purpose and are
too informal or too heavy to be analyzed by a veatfon tool [24].

The natural idea behind the object-oriented paradigto consider the system we
intend to model, simulate or develop, as a colbectf active objects which collaborate
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with each other. The term active object denotealdonomous entity equipped with its
own behavior and some internal data which corredpda the state of object and of
course may change during its lifetime [9].

The aim has been to introduce a new formal moddimguage to fill the gaps
between object-oriented programming languages (&PRBked by engineers and the
formalisms used for performance evaluation andigation purposes.

This paper presents the syntax and semantics a@wa abject-oriented modeling
language for discrete-event systems called RayLBaged on the above aim, we have
designed the syntax of RayLang similar to OOPLs.RlayLang, objects that are
instantiated from classes, run concurrently and @anmunicate with each other by
requesting services. RayLang has a well-definedh&brsemantics and incorporates
several ingredients of programming languages ajid-Wweight notations. Every object
in a RayLang model has some internal state vasahifel some service handlers for
executing requests of other objects. The state espdcRayLang models can be
generated. We have shown that Markovian RayLangelsochn be transformed into
continuous-time Markov chains (CTMCs) and then bé/exl by existing solution
techniques.

The remainder of this paper is organized as follo8sction 2 explains the
motivations of this work. Section 3 briefly introcks the related works. In Section 4,
the core language of RayLang and its syntax andstes are presented. The analysis
of RayLang models are discussed in Section 5. Tstiiative examples are given in
Section 6. Section 7 compares RayLang with othendétisms. And finally, Section 8
concludes the paper.

2. Motivations

The main motivation of proposing a new formalisns lheen to provide an object-
oriented language for modeling, performance evalnaand verification of stochastic
discrete-event systems with a well-defined and ¢asyse syntax and semantics. The
proposed formalism should have the basic necessamgtructs in a programming
language-like syntax (instead of using mathematicdhtion), which makes it easy to
use for practitioners. Thus, the formalism will yide an effective and simple approach
to model discrete-event systems.

The intended formalism may also integrate modeétiagerformance evaluation
techniques, model checking techniques and softeageeering concepts. To model a
discrete-event system using the new formalism, ael@o can exploit performance
evaluation techniques based on the specified reamasthg analytic solving techniques
or discrete-event simulation. Having these featunegkes the new formalism a light-
weight notation with a rigid semantics that triesfill the gap between traditional
formal methods and software engineering tools.

3. Related Work

In the literature, there has been a lot of effortptopose modeling languages for
modeling concurrent and distributed systems. Is #g@ction, we will briefly review
those models, which are closely related to the woesented in this paper.

Petri nets (PNs) [23] which have been introduced rhodeling concurrent and
distributed systems are well-known models that hgvaphical representation in
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addition to the formal definitions and structur@ie to their modeling power and

simplicity, Petri nets have been extended with sdveatures. Stochastic extensions of
Petri nets, such as stochastic Petri nets (SPAY) generalized stochastic Petri nets
(GSPNSs) [2] and stochastic activity networks (SANZ] are the most famous models
used in performance and dependability evaluaticsysfems.

In addition, several high-level and object-oriengatiensions of Petri nets have been
introduced to make them more appropriate and easgd. Coloured Petri nets (CPNSs)
[14], stochastic well-formed nets (SWNs) and laaxgi for object-oriented Petri nets
(LOOPN) [17], object Petri nets (OPNs) [16] ammhcurrent object-oriented Petri nets
(CO-OPN) [6] are the most useful examples of sxtknsions.

Modeling, specification and evaluation language @HED) [3] is a description
language which depicts a network like model withcantrolled flow of tokens,
expresses the two-dimensional network structueetdken flow-control mechanisms as
well as the routing probabilities and the stocltastelay information in a one-
dimensional textual notation.

Maude [18] is a language based on rewriting legib modules use rewrite theories,
while computation with such modules correspondsfticient deduction by rewriting.
Real-time Maude [8] is a language and tool suppgrthe formal specification and
analysis of real-time and hybrid systems in timeddaoles and timed object-oriented
modules, which can be transformed into equivaleat®® modules.

Classical process algebras are abstract languaggrs for the specification and
design of concurrent systems. The most widely knpvatess algebras are the calculus
of communicating systems (CCS) [20] and commuimigasequential processes (CSP)
[12]. There exist several timed and stochastiergsibns of process algebra with the aim
of performance evaluation. Performance evaluatioocgss algebra (PEPA) [11]
extends the classical process algebra with thectgipe assigning rates to activities to
quantify time and uncertainty, which are descrilmedn abstract model of a system.

The specification language[13] which is developed as a modeling and simaoiati

tool for design of concurrent systems is inspirgddSP and the guarded command
language (GCL). Similar to CSP, the behavior otesyscomponents is described by
processes that communicate via channels. Commigmcath yis synchronous,

unidirectional and timeless and variables are typed

The modeling language MoDeST [4] reasons abowhsstic timed systems based
on the stochastic timed automata (STA) formalism doynbining the features of
probabilistic GCL (pGCL), process algebras with Faike synchronization over
common actions, and other language constructs ssclurgent actions, exception
handling and process instantiation.

The Actor model of computation was originally prepd by Hewitt [10] and further
developed by Agha [1] into a concurrent objecteolsiodel. Actors are self-contained,
concurrently interacting entities of a distributsamputing system. They communicate
via asynchronous message passing which is faicande dynamically created and the
topology of actor system can change dynamicallyad®ee objects language (Rebeca)
[25] is an actor-based language with a formal é@tion supported by a front-end tool
for the translation of models into the input langes €.9. PROMELMof the existing
modelchecking toolse(g.SPIN).
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4. Definitions of RayL ang

RayLang is an object-oriented stochastic modeliaggliage for discrete-event
systems,.e. systems which are in a state during some timevalteafter which an
atomic event might happen that changes the statteeafystem immediately. RayLang
has two different settings:

* Non-deterministic settingln this setting, the events occur in a nondeteistin
manner and no timing parameter is required. Thdicgtipn of this setting is on
model checking.

» Stochastic settingn this setting, the time parameters are speciftigdthe events,
which indicate the completion time of the actioetated to the events (which are
called services here). The application of this isgttis on performance and
dependability evaluation.

The focus in this paper is only on the stochasgiting. For this purpose, we will
firstly present the informal definition of RayLan@hen, the syntax and formal
definitions and behavior of the model will be preeel.

An Informal Description of RayLang

In RayLang, a model is composed of a finite setre#ctive, self-contained and
communicatingbjects which are executed concurrently. An object isansated from
aclass consisting of somstate variablesandservices A state variable hastgpe(such
as, integer, short, Boolean,ejcwhich defines the values that variable can haid a
should have aimitial value. A special kind of variables are calledndition variables
that are of type BooleamReferencesre another kind of variables which denote object
acquaintances and can be used for object commigmigatrpose.

Services model the behavior of an object chang&ate variables. Unlike methods in
programming language, services have not any retalne. There are two types of
services: ordinary and immediate Ordinary services are executed by passing an
asynchronous message (calkstvice requeltto them. Each ordinary service has an
unbounded buffer, identified aservice queuefor arriving service requests. When a
request at the head of a queue of an ordinaryceisiserviced, its service handler is
invoked and the request message is deleted frommairesponding queue after a time
based on the servigerobability distribution function(PDF). Each ordinary service
could have a precondition which is a Boolean exgoes and acts as a guard for
enabling/disabling the execution of service. If grecondition of an ordinary service is
evaluated to true, it can be triggered by remowngquest message from the top of its
corresponding queue and results in an atomic execof its body which cannot be
interleaved by any other ordinary service executieor an ordinary service, a user-
defined PDF must be specified which models theiserexecution time (the time that
must be elapsed while the service is enabled untfihishes serving a request in its
requests queue).

On the other hand, immediate services do not hayesarvice queue, but rather act
like methods or functions in programming languageswhen an immediate service is
called (requested), it is executed immediately ¢eyonously). An immediate service
could not have a precondition and is always enabtetican be executed immediately
whenever it is called. Requesting an immediateiserman be viewed as a synchronous
(local or remote) method invocation.

In a RayLang model, computation takes place by meénequesting services (a kind
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of message passing) and the execution of serviesobject can communicate and
interact with other objects when Jitknows" their name, which are said to be their
acquaintances. An object knows its acquaintancdsbiyng references to them.

The Syntax of RayLang

The Java-like syntax of RayLang classes (objectplat®s), objects (class
instantiations), and models (parallel compositidrolojects) in a BNF-like notation is
presented in Figure 1. Note that the words inatahow terminals (such as language
keywords, operators and identifiers).

In each class, after declaring variables, someic=will be defined. Service body
instructions allow a probabilistic caseaég or some (remote or local, ordinary or
immediate) service requestse(vRequelt broadcast service requestsdcstRequekt
value assignmentsagsgmntStateméentconditional statementscgndStatemehtand
sequential compositions.

In service request statements, the ID of callege(hvhich receives the request) and
the service name can be specified that are folldwedctual parameters. If the callee is
not specified (or keyworthis is used), the caller and callee are the same whanifels
a local service request. If the requested sergiemiordinary service, this can be viewed
as an asynchronous message passing that messagestme parameters passed to the
corresponding service handler in callee which regmés a request for service. This
could be regarded as a method call (similar to eatignal object-oriented
programming languages) if the requested servi@nignmediate service. Sometimes,
this can be used for object synchronization.

model - (class)+ main rewards

class - ‘class’ClassName{* (varDefinitions)? servDefinitions}’

varDefinitions >varTypeVarName (‘,'VarName)* *;’

varType —refVariableType | conditionVariableType | stateVariableType

refVariableType —>ClassName

condVariableType - ‘condition’

stateVariableType =>‘int’| ‘short’| ‘byte’ | ‘bool’

servDefinitions - service+

service - (‘immediate’)? ‘service’ServiceName'(‘(parameters)?‘)’ Dist?
1’ (precondition)? serviceBody}’

parameters - parameter ()’ parameters )?

parameter —>parTypeparName

precondition - ‘precondition’ ’booleanExpression

Dist - distributionFunction‘(" actualParameters’)

serviceBody —caseStructre | ( statement ;’)*

caseStructute > ‘case’{’ (option)+ }’

option —>ProbValue’’ ( statement ")+

statement —assgmntStatement | ifStatement | serviceRequest | brdcstRequets
| case | varDef

brdcstRequets >className’,’servName’(‘ (actualParameters)? ‘)’

serviceRequest - ((objectID | ‘this’) “’)? servName’(‘ (actualParametes)? ‘)’

actualParam - (value | varName |‘this’) {’ (value | varName | ‘this’) }*

assgmntStatement >varName'++’ | varName *--’ | varName‘=" Expression

ifStatement - if ‘(‘ booleanExpresion )’ {'statemensts‘}’ (‘else’
{'statemensts}’)?

varDef —>varDefinitions

main = ‘main’ (")’ {'objectDef * }’

objectDef >classNameobjName‘(‘initializationParameters’)’ %’

Figure 1.The syntax of RaylLang
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Ordinary services could be exploited in broadcasvise requests. A broadcast
request statememiassName. serviceName(p4, ..., p,) Causes broadcasting a request
message to the ordinary serviserviceNameof all objects in the model with type
classNamewherep,,...,p, are the parameters of the message. In this waggueest
will be sent to an ordinary service of all objegtgh a special type defined in the
model.

A (probabilistic) case statementaEg can be used for the execution of some
alternatives and causes one of its correspondimice to execute probabilistically.
Case statements can only be used in ordinary sstvifter defining the classes, there
is a part for specifying model configuratiomdin). This part is specified with the
keywordmainfollowed by the definition of the model configuat which is defined as
a finite number of objects that must be created thed run concurrently. Each class
definition has a constructor with a name same asltss.

When an object is defined in main, a request i$ &@fits constructor to create an
object with proper parameters. This constructor tnassign the initial values for all
local (state, condition and reference) variabled eould only request local ordinary
services (immediate, remote and broadcast sereipgests as well as case statements
are not allowed in constructor). TR®nstructormust be defined as immediate services.
After definition of all objects in main part of aotel and thus immediate execution of
their constructors, the model will be in its initstate.

Some non-terminals (such as expressions and paemeft services) that are not
given in the grammar are like as in programminggleyes €.9. Java). Like
programming languages, the model uses scope miassing identifiers. An identifier
(of a variable) declared in a class’iknown" in all services of that class. When an
identifier in service parameters has the same nasnan identifier in the class, the
identifier in the class is"hidden" and could be accessed only by the keywibid.
Because the state and reference variables in actaje private, they could not be used
or modified in other objects. Condition variablésan object could be used as read-only
Boolean variables via the name of its object (bngists reference) in precondition or
statements in service body of other objects. Ferstike ofeasy modeling, the modeler
can also use local variables in the body of seswkich do not affect the object's local
configurations (state variables, reference vargble). As in programming languages,
local variables are created dynamically and arel wsghe execution of a service and
after that, the value of them will be destroyed aadnot be used in the next service
execution.

Semantics of RayLang
In this subsection, the semantics of RayLang isgred. The variables defined in an

objecto are typed (integer, boolean, char, condition,rezfee.etc). We skip the detail

of variable declarations as they are irrelevanh&purposes of this paper. We assume a
finite setVariablesof variables and a domain (typBpm(x) for any variablex. We
write Valuesto denote the set of all possible values for thaables,i.eValues =
Uxevariavies Dom(x). The initial value of each variable must be spedifin the
constructor. An object o; (with the unique identifier i) is a tuple

< V;, Serv/,iServ;,Q; > whereV; is the set of variables (state variables, condlitio

variables and reference variableSgrv; = Ulsjs]Servl.’ is the set of all ordinary
servicesServ/, and iServ; = U<k iServf is the set of all immediate services
iServF of object0; whereJ andK are the number of ordinary and immediate services,

17
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respectively angl andk are called service identifier of the ordinary sixse\Serv{ and
immediate serviceServ{‘. Each ordinary servicﬁervi’ is a tuple< Pre, Dist, Body >

where theS"ervi] .Pre is the precondition expression of the ser\Heevi’ (as described
in syntax section)Dist(.) is general probability distribution function whichay have
zero or more parameters and describes the timettieagervice needs to be executed
while it is enabled, anBody is a set of RayLang instructions. For an ordirsegvice,

if the precondition is not specified explicitly, will always be evaluated as true. Each
ordinary service in an object has a queue whichbsadefined as a finite sequence of
requests for that service. The service requesteqoéwan objecD;, defined byQ;, is
like a multi-queue consisting of all the queuest®rdinary services and including all
the requests that have been sent to the ordinarices and have not been serviced yet.
Q* denotes the set of unbounded FIFO multi-queuesctiratains message requests of
all (ordinary) services of all defined objectse.Q* = Uy;e; Q; Which Q; is the
unbounded FIFO multi-queue corresponding to sesvieguest queue of obje6y.
Let's Q; be a set of all unbounded FIFO que@s= Uy<;<; g/ = {q}, ...,qi]}) where

each queuq{ contains requests of the ordinary ser\ﬁeevi’ in object0;. For mapping
each ordinary service of an object to one of thegeues, functionqueue
queue: Serv! — ¢, is defined such thaf/ € Q;.For a model, there exists a universal
setl of all objects that are engaged in the model Hphdlenotes the number of all
defined objects in the system.

The state space of the modEg) (s defined as:

r=[[@mxe
1<i<|I|
where I;:Variables — Values is the local state of the objeai, an evaluation

function that maps each local variable to a valdiethe appropriate typeVf €
Variables,T; € Dom(x)), and Q; is the unbounded FIFO multi-queue of service
requests for the obje€t; as mentioned before. However, all of these stagzl mot be
actually reachable.

Now, we can define the behavior of a modelas a labeled transition system
<T,L,-,y, > where:
o T'= [l (i X Q) is the set of states as said earlier whigie the set of possible

values for internal object's (state, condition aeférence) variables ang; is an
unbounded FIFO multi-queue of the service requesie objec0;,

e L= U15is|I|Servij is the set of labels that are all possible ordirsarvice request
that can be executed @, WhereServij € L means the execution of a request for
serviceServij in objecto;,

« —CTI'xLxT is the set of transition relations érwhere y,ly, iff y;,¥, €T and
[ = Servij € L is an enabled transition which meaysr = head(yl.qij), r is the
request for the ordinary servicServ{ on head of the queue and the precondition
Servl.j . Pre of the service is evaluated as true gpdesults fromy, by | as follows:
= Performing the actual transition from the stgeto the statg, (by the service

Servl.j) needs time which depends on the probability distribution ftioc of

7
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the servicef{ervij.Dist) in the statey, and the real execution will be completed

when timet is elapsed in which the service remains enablsdvé assume that
the weight and the priority of all services are @gua the timet, if there exist
multiple enabled services that are scheduled fecaton, one of them is chosen
for execution with equal probability.

j

= The request message is removed from the heady,qf;, i.e.)/z.ql.j=

tail()/l.ql-j). This causes assigning the values of the formedrpaters to the
real parameters, too.
= An ordinary service execution that is caused byesty leads the execution of

service Serv; of the objecto as a sequence of instructions as an atomic

]
L

operation as follows:

o |If the ordinary service is a multi-option servicee(the service has a
probabilistic case statement in its top level atehents), each case option
(internal statements of the option) leads in armatooperation with the
probability p defined as the option's probability. If not, theeeution of the
service leads to unique outcome state,

o The execution of an ordinary statemerd.g( assignment statements,
conditional statementsetc) in Servi’ may change the value of some
variables in object, ,

0 The execution of each statement:

((this|objectID)?.servName(actualParams?)
where servNameis an ordinary service, changes the service reques
queueq;'.’, wherei’ is the object identifier obbjectID and is same as
when local service request (without specifying abjectIiD or with
keyword this) is used andq;'.’, € Q;, is the queue corresponding to
ordinary serviceservNameavhen;j' is the service identifier,

o Execution of each ordinary service broadcast rdqustatement
(className.servName(actualParamsZhanges all service request queues
q]i.', wherei’ is object identifier of all objects with typelassNamgi’ €
{t|1 <t < |[I|ADom(o;) = className}, and for each’, j' will be the
service identifier ofervNamen objecto, . Immediate services could not be
used in broadcast requests,

o Execution of each immediate service request stateme

((this|objectID).servName(actualParams?)
(where the correspondingervNameis an immediate service), causes the
execution ofiServi’,' (like a method call in programming language) whiere
is the object identifier obbjectID and is same aswhen local service request
(without specifying anyobjectIlD or with keywordthis) is used and this
causes atomic execution of some statements, resggct
Yo Is the initial state of the model. Variables mbst initialized to their default
values according to their types in constructorsl @y is defined such that in the
beginning of the model, for all constructor of objed®; is executed. It is obvious
thaty, € T.
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5. Analysis of RayL ang Models

RayLang is a language for modeling discrete-evemstesns. The state space of
RayLang models can be generated by model executiahich every ordinary service
can be viewed as an event and the value of obgg@hles in addition to the content of
service queues represent the state of the modei€atoned earlier). The state space of
the model can be considered as a labeled transjistem which could be used in the
analysis process. The initial state of the modelths situation where only the
constructors of all objects have been executeckakch state, some ordinary services
may be enabled,e. there exist at least one request in their reqgastuie and their
preconditions evaluated to true. The executionacheenabled ordinary service causes a
transition to another state (if the modeler usebabilistic case statement in a service,
the execution of the service results in probalwlistansitions into different states).
Generating the state space can be done in a degtloif breadth-first order. Using the
defined semantics, if the state space of the mstdefing from the initial state is finite,
we can define the reachability graph as a labeledcted graph based on the
reachability set (the set of all reachable staf€i)s reachability graph can be used for
model checking. If all ordinary services of a modelve exponential PDFs, the
reachability graph can also be transformed into oaticues-time Markov-chain
(CTMC), which can be used for analytic solutiortlté model.

Analytical approaches usually suffer from the stgiace explosion problem. When
the state space of a model is very large or latigen to be handled, discrete-event
simulation technigues can be used to analyze Raybawdels. A simulation path is a
(random) path between some states starting frormiti@ state. Each event in the path
is the (atomic) execution of an enabled ordinaryise.

Reward Specification in RayLang Models

For evaluation of a RayLang model, the modeler ndefihe some reward variables
which are specific measures of system behaviordoasénis/her interests. Rewards that
are supported here are based on [1@fhich defines a unified approach to the
specification of performance, dependability andfiqremability. A reward variable is a
set of one or more functions (with tygm®ublg which return reward value and are
defined on a state or transition between statébarmodel,.e. there are two types of
reward functions: impulse reward functions and rmaeard functions that specify
impulse and rate rewards, respectively. Rate resvard used to define rewards based
on the time in each state and the correspondingtitmdefines the measurement that
the reward should evaluate. The impulse rewardtioing that define impulse rewards
are evaluated when the specified ordinary servi@mbject in the model is executed.
For each reward, type of rewards must be defineidhwtietermines when, in system
time, the reward functions must be evaluated aolidessteadyStatanstanceOfTime
intervalOfTime and averagedintervalOfTimeas presented in the syntax of reward
specification (Figure 2).
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>’rewards’{‘(reward)* }’ rewards
>rewardID’;'rewardType{rateReward? reward
(impulseReward)* }’

>~ ‘execute’("'ObjID"’OrdinaryService )’ {'Body‘}’ impulseReward
->-"‘if ‘{"booleanExpresion? ‘}’ {'Body }’ rateReward

Figure 2.The syntax of the reward specification in RayLang models

I mplementation of RayLang in PDETool

PDETool is a multi-formalism modeling tool which opides features for
construction and translation of models into the XbHsed input language of an SDES-
based simulation engine, called SimGine [15] . PB& is easily extensible to support
a wide range of graphical and non-graphical foremadi. Furthermore, it facilitates the
construction, animation and analysis of models.oArialism can be implemented in
PDETool if a mapping can be provided to the inpaguage of SimGine.

We have implemented RayLang in PDETool by develppin translator, which
converts RayLang models into the input languageSionGine. It makes modelers
enable to evaluate RayLang models using discrezatesimulation technique. If all
events' delay functions are exponentially distedtthe tool can also be used to
analytically solve the model. In this directionetimodel is transformed into a CTMC by
generating reduced reachability graph, which candssl in both transient and steady-
state analysis based on the specified reward \lasab

The translation of RayLang model into the inputgiaage of SimGine is performed
by a two passdsL(K) parser. In a nutshell, this process is as foll@\gects' states and
services are flattened in the first step of traimta For each object, internal state-
variables will be translated into the model's stedeiable. Each ordinary service is
mapped into an event in addition to a queue (amte-sariable) which contains the
service's requests. All immediate services arestaded into auxiliary functions, which
can be called during model execution and has aapgsrameteobjectlDto determine
the object in which the service is called.

6. Illustrative Examples

In this section, we present two examples to ilhtstrthe syntax and semantics of
RayLang.
Example 1. A Client-Server Model

Consider a client-server system, presented in Ei§uwhich has a server that serves
some clients. Each client sends a request to thersen the servicesendReqwith
exponential rate 1) and waits for the server tpoed it. The server has a queue
(corresponding to a service sayRe( contains all received requests that is not served
yet. The process of requesting and generating pepnesponse take a time which is
distributed exponentially. The generated resporsete the client, which generates the
corresponding request and after that, the clieviRspis executed after 3.0 time units.

10
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class Client{
Server theServer;
immediate service Client(Server theServer){
this.theServer=theServer;
arrive();
}
service arrive():Exp(1){
theServer.enterInQueue();
arrive();
}
}

class Server{
immediate service Server(){ }
service enterInQueue():Exp(5){
serv();

immediate service serv(){}

main(){
Server s(); Client c(s);

}

rewards{
numberOfWaitedCustomers:steadyState{
-if(true){return s.enterInQueue#;}

}

Figure 3.A client-server model in RayLang

There are two classeSJient andServer which are templates of the buffer and some
clients. Each client has a referers¢o the object server for interacting with it. The
server interacts with its clients via a referendec is passed to the servicerRegby
the parameter with of the type of client.

Objects' definition is followed by classes. Eacheob has a type and proper
initialization parameters, which are passed to dbestructor of that object. Here, a
server and four clients are defined. After initialg all objects by executing their
constructors, the model would be in its initial tstaThe impulse reward variable
rewardlis specified to investigate how many requestssareed between time 10 and
20 in the server.

Example 2.A Readers and Writers Model

As the second example, we modify the last exanpladdel probabilistic cases and
mutual exclusion. Assume that there exist a budfedt some customers that access to
the buffer for reading from/writing to it. Multipleeaders can read from the buffer
simultaneously but a writer could write into it gnf there is no readers or writers (any
customers generally). Figure 4 shows a RaylLang tfodéhis problem.

There are two classes, buffer and customer, whiehteanplates of the buffer and
some customers. The state variablesdersandwriter in object buffer represent the
number of simultaneous readers and writer in tHéeb@writer is always equal to zero
or one). Condition variablesustomerExisandwriterExistwill be true if any customers
(readers or writer) and any writer exist in thefeyfrespectively.

At the beginning, each object customer will hareguest for executingccessBuffer
to access the buffer. This will cause to try regdirom/writing to the buffer with
probability 0.9/0.1 which is done by using a probabilistic case stat#mGenerating
such a request is performed during the time expaadgndistributed with ratel. The
objectbuffer serves the requests of customers. A sersiagReadcan be executed if

11
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the buffer is not performing a write request argkevicestartWrite can be started only
if the buffer is not performing any other (readt@yirequest. Executing a service
startReadstartWrite andfinishReadfinishWrite show that the buffer starts to perform a
read/write request and finishes performing a reat¥wequest, respectively. Start
process of the request takes place as early asblgogthe PDF of the service is
deterministic with the parameter zero and it wel done whenever it is enabled). The
immediate servicgetResulin each customer object is performed when theesigof
the object in the buffer is served and change thte ©f customer from waiting into
active.

In reward specification pargvgNRis defined as a rate reward which is intended to
evaluate the steady state average number of ragemeist for reading in request queue
of servicestartReadn objectb. It uses operato# which means the number of requests
in the service queue. This property can also bduated by rewarcavgNR2which
examine the property using varialseadersin objectb that explicitly models (counts)
the number of read requests. The average numbireoirite operation, the average
number of requests waiting for a read operationvariig operation can be evaluated by
rewardsavgNW avgNWRandavgNWW respectively. The simulation results with 99%
of confidence level within the confidence inter@l compared to the analytic results
(both obtained using PDETool) are presented ing &bl

class customer{ service startwrite(customer c):Deterministic(0){
buffer b; precondition: not icustomers;
immediate service customer(buffer b){ writer++;
this.b=b; iwriter=true;
accessbuffer(); icustomers=true;
} finishwrite(c);
service accessbuffer():Exp(2){ }
case{ service finishread(customer c):Exp(1){
0.9: b.startread(this); readers--;
0.1: b.startwrite(this); if (readers==0){icustomers=false;}
} c.release();
} }
immediate service release(){ service finishwrite(customer c¢):Exp(1){
accessbuffer(); writer--;
} iwriter=false;
} icustomers=false;
c.release();
class buffer{ }
int readers, writer; }
condition icustomers, iwriter;
immediate service buffer (){ main(){
readers=0; buffer b();
writer=0; customer c1(b),c2(b),c3(b),c4(b);
icustomers=false; }
iwriter=false;
} rewards{
service startread(customer avgNR:steadyState { -if(true){return b.finishread#;}
c):Deterministic(0){ }
precondition: not iwriter; avgNW:steadyState { -if(true){return
readers++; b.finishwrite#;} }
icustomers=true; avgNR2:steadyState { -if(true){return b.readers;} }
finishread(c); avgNW2:steadyState { -if(true){return b.writer;}}
} avgNWR:steadyState { -if(true){return
} b.startread#;} }

avgNWW:steadyState { -if(true){return
b.startwrite#;}

}
Figure 4.A Readers-Writers model in RaylL ang
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Table 1.Evaluation of rewards in Readers-Writers modelusing PDETool

Reward 1D Simulation result Variance  Analytic result
avgNR 2.5715 0.0274 2.5344
avgNw 0.0978 0.0067 0.0998
avgNR2 2.5715 0.0274 2.5344

avgNw2 0.0978 0.0067 0.0998
avgNRW 0.1622 0.0133 0.0164
avgNww 0.6618 0.0158 0.7060

7. Comparisons

In contrast to most modeling formalisms, such asi Rets and process algebras, in
which the modelers deal with some low-level prises €.g.transitions, places, tokens
and channelgtc), in RayLang, the important primitives such asechy, variables and
services are high-level. This makes RaylLang apmtgfor modeling systems with a
proper abstraction level. Now, we compare RayLait Webeca, which is the most
similar formalism. Then, we compare RayLang, witing other existing models.

RayL ang vs. Rebeca

As mentioned in Section 2, Rebeca is an actor-bdaaduage for modeling
concurrent and distributed systems. If we ignorectsastic (timing) concept of
RayLang, it has some conceptual and syntactic aiityilwith Rebeca. Even, one may
think RayLang as an (stochastic) extension of R&beith deep modifications. In
RayLang, we havebjects servicesandreferencesnstead ofrebecs massage servers
and known objectan Rebeca, respectively. The major differencesvben these two
languages can be explained as follows:

* In Rebeca, each rebec has its own message queugsantérnal message servers
and all requests for the rebec come into this queoethe request on the head of the
queue, the rebec executes the proper message.dguoven RayLang as an object-
oriented modeling language, each service can bsidemred as an active thread
which has its own request queue that containsetyeasts sent for the corresponding
service.

* RaylLang has two types of services: ordinary sesviged immediate services. In
contrast of Rebeca in which all communications falleee by asynchronous message
passing and a message server may be executed wiegunest exists on top of the
rebec's queue, in RayLang, ordinary services ctwldexecuted if there exists a
request in its request queue and its precondisoenabled. Immediate services act
like (synchronous remote or local) method callspmogramming language and
execute immediately whenever they are called.

* RaylLang supports additional useful modeling faetit (like broadcast service
requests and dynamic objects relationship) whichy rmalp modeling realistic
systems like service-oriented systems and competerorks.

Comparison with Other Formalisms
A comparison between RayLang and other existirgged|formalisms is presented in

Table 2.

13
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Table 2.A Comparison of RayLang with Other Related Models

Criteria X SPNL OSAN LOOPN MoDeST CSP/CCS Rebeca

Model [13] [26]  [27] [17] [4] [12][20] [25] ~avkang

Similarity with
programming X X x X v v v
languages

Object-

. v v v v v v v
based/oriented X

Synch./asynch. vIx
comm.

Having non-
deterministic v X v X v v v v
extension

Having probabilistic
extension

Having
timed/stochastic v v v v v X X v
extension

Model checking v
tool support

Performance
evaluation tool v v v v v X X v

support

8. Conclusions

In this paper, we introduced an object-oriented eliad language called RayLang
for stochastic discrete-event systems and formadifmed its syntax and semantics.
Object-oriented modeling can help modelers throegbapsulated constructs. On the
other hand, model-based performance and depergalalialuation and formal
verification can be used to design more dependsyéems. In RaylLang, there are
active objects (which are instantiated from classes concurrently and communicate
with each other by requesting services. Each objagtts internal variables and thus its
internal states. After defining classes and objetts modeler can evaluate interested
measures specified by some reward variables.

The stochastic setting of RayLang models, whichdigeussed in this paper, can be
used for performance and dependability evaluatiostachastic discrete-event systems.
The non-deterministic setting of the language camiged for modeling and verification
of discrete-event systems via model checking teples of the model against some
specified properties.

We have implemented RayLang within the PDETool ®yeafoping a translator
which maps RayLang models into the input languagth® tool's simulation engine,
called SimGine. Numerical analysis of RayLang med@lhere the model satisfies
Markovian properties) can be exploited by geneggtive state space of the model in the
tool and solving the obtained CTMC.

Currently, we allow simple data types. More objegented properties e(g.
inheritance) and supporting rich data types camati@ed to the language in future
extensions of RayLang.
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