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Abstract 
Artificial neural networks have the advantages such as learning, 

adaptation, fault-tolerance, parallelism and generalization. This paper mainly 
intends to offer a novel method for finding a solution of a fuzzy equation that 
supposedly has a real solution. For this scope, we applied an architecture of 
fuzzy neural networks such that the corresponding connection weights are real 
numbers. The suggested neural net can adjust the weights using a learning 
algorithm that based on the gradient descent method. The proposed method is 
illustrated by several examples with computer simulations. 

 
Keywords: Fuzzy equations, Fuzzy feed-forward neural network (FFNN), Cost function, 
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1. Introduction 

Fuzzy equations are very useful for solving many problems in several applied fields 
like mathematical economics and optimal control theory, because many mathematical 
formulations of physical phenomena contain these kinds of equations. Therefore, 
various approaches for solving these problems have been proposed. One approach to 
indirect solution is using fuzzy neural networks (FNNs). In recent years the FNN model 
has been rapidly developed and put into use in a wide variety fields [9, 10, 21]. FNNs 
are simplified models of the biological nervous system and therefore have drawn their 
motivation from the kind of computing performed by a human brain. FNNs are in 
general capable of close approximation of the prediction model without the need of its 
explicit (mathematical) formulation in contrast to statistical approaches. 

First time, Buckley in [8] applied a structure of FNNs for solving fuzzy equations. 
Ishibuchi et al. [13] defined a cost function for every pair of fuzzy output vector and its 
corresponding fuzzy target vector and also designed a learning algorithm of fuzzy 
neural networks with triangular and trapezoidal fuzzy weights. Hayashi et al. [12] 
fuzzified the delta rule and summarized much of the work in fuzzy neural networks. 
Buckley and Eslami [7] employed neural nets to solve fuzzy problems with both real 
and complex fuzzy numbers. Moreover, Linear and nonlinear fuzzy equations have been 
solved in [1, 2, 3, 6]. Jafarian et al. [16] proposed a numerical scheme to solve fuzzy 
linear volterra integral equations system. The topic of numerical solution of fuzzy 
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polynomials by FNN investigated by Abbasbandy et al. [4], consist of finding solution 
to polynomials like 0nn1 axa...xa =++  where Rx ∈  and n10 a,...,a,a  are fuzzy 
numbers. Jafarian and Jafari [15] applied fuzzy feed-back neural network method for 
approximation of the crisp solution of dual fuzzy polynomials. We refer the reader to 
[20, 22] for more information on fuzzy polynomials. 

The objective of this paper is primarily to design a new model based on FNNs for 
approximate solution of fuzzy equations. In this work, an architecture of FFNN2 (fuzzy 
feed-forward neural network with fuzzy set input signals, fuzzy output signal and real 
number weights) equivalent to fuzzy equation of the form  A  (x)fA  ...  (x)fA 0nn11 =++  is 
built, where n10 A,...,A,A  are fuzzy numbers and )(xfi  (for i =  1, ..., n) are real 
functions. The proposed neural network has two layers that the input-output relation 
of each unit is defined by the extension principle of Zadeh [23]. The coefficients of the 
fuzzy equation and the right hand fuzzy number are considered as input signals and 
target output, respectively. The output from the neural network which is also a fuzzy 
number, is numerically compared with the target output. Next a cost function is defined 
that measures the difference between the fuzzy target output and corresponding actual 
fuzzy output. Then the suggested neural net using a learning algorithm that based on 
the gradient descent method adjusts the crisp connection weights to any desired degree 
of accuracy. 

The remainder of the paper is organized according to the following outline: In 
Section 2, some basic definitions are presented. In section 3, the fuzzy equation is 
briefly described. In this section, we describe how to find a real solution of the fuzzy 
equation by using FFNs. In section 4, the applicability of the method is illustrated by 
several examples in which the exact solution and the computed results are compared 
with each other. Finally, conclusion is described in section 5. 

2. Preliminaries 

In this section the most basic used notations in fuzzy calculus are briefly 
introduced. We started by defining the fuzzy number. 

Definition 1. A fuzzy number is a fuzzy [ ]1,01 =→ IR  such that: 
i. u is upper semi-continuous, 
ii. 0)( =xu  outside some interval [a, d], 
iii. There are real numbers ,:, dcbacb ≤≤≤  for which: 

1. )(xu  is monotonically increasing on [a, b], 
2. )(xu  is monotonically decreasing on [c, d], 
3. )(xu  = 1, .cxb ≤≤  

The set of all fuzzy numbers (as given by definition 1) is denoted by E1 [11, 19]. 
An alternative definition which yields the same E1 is given by Kaleva [17] and Ma et 
al. [18]. 

Definition 2. A fuzzy number v  is a pair ( ,v v ) of function ( )v r  and ( ) : 0 1v r r≤ ≤ , 
which satisfy the following requirements: 
i. ( )v r  is a bounded monotonically increasing, left continuous function on (0, 1] and 
right continuous at 0, 
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ii. ( )v r  is a bounded monotonically decreasing, left continuous function on (0, 1] and 
right continuous at 0, 
iii. ( ) ( ) : 0 1.v r v r r≤ ≤ ≤  

A popular fuzzy number is the triangular fuzzy number ( , , )m l uv v v v=  where mv  
denotes the modal value and the real values 0lv ≥  and 0uv ≥  represent the left and 
right fuzziness, respectively. The membership function of a triangular fuzzy number is 
defined as follows: 

1        , ,

( ) 1        , ,

0                     , .

m
m l m

l

m
v m m u

u

x v v v x v
v

v xx v x v v
v

otherwise

µ

− + − ≤ ≤

 −

= + ≤ ≤ +





 

Its parametric form is: 
( ) ( 1),  ( ) (1 ),  0 1.m l m uv r v v r v r v v r r= + − = + − ≤ ≤  

Triangular fuzzy numbers are fuzzy numbers in LR representation where the 
reference functions L and R are linear. 

 
2.1 Operations on fuzzy numbers 
 

We briefly mention fuzzy number operations defined by the extension principle 
[23,24]. 

{ }
{ }( )

( ) max ( ) ( ) ,

( ) max ( ) ( ) ,
A B A B

f Net A B

z x y z x y

z x y z xy

µ µ µ

µ µ µ
+ = ∧ = +

= ∧ =
 

where A and B are fuzzy numbers, (.)∗µ  denotes the membership function of each fuzzy 
number, ∧   is the minimum operator, and f is a continuous activation function (such as

xxf =)( ) of output unit of our fuzzy neural network. 
The above operations on fuzzy numbers are numerically performed on level sets (i.e. α
-cuts). For ,10 ≤< α a −α level set of a fuzzy number A is defined as: 

[ ] { } ( ) , ,AA x x x Rα µ α= ≥ ≥ ∈  

and [ ] ( ] [ ] .1,0
0 α

α AA ∈=   Since level sets of fuzzy numbers become closed intervals, we 

denote [ ]αA by  

[ ] [ ] [ ], ,l uA A Aα α α =    

where [ ]α
lA and [ ]α

uA  are the lower and the upper limits of the α -level set [ ]αA ,   
respectively. From interval arithmetic [5], the above operations on fuzzy numbers are 
written for the α -level sets as follows: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

, , , ,

( ) ( , ) ( ), ( ) ,

l u l u l l u u

l u l u

A B A A B B A B A B

f Net f Net Net f Net f Net

α α α α α α α α α α

α α α α α

     + = + = + +     
 = =  

 (1) 
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[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

, , ,       0,

, , ,       0.

l u l u

l u l u

k A k A A k A k A if k

k A k A A k A k A if k

α α α α α

α α α α α

    = = ≥    
    = = <    

 (2) 

For arbitrary ),( uuu =  and ( , )v v v=  we define addition ( )u v+  and multiplication 
by k as [11, 19]:  
( )( ) ( ) ( ),
( )( ) ( ) ( ),
u v r u r v r
u v r u r v r

+ = +
+ = +

 

             
( )( ) . ( ),  ( )( ) . ( ),        0,

( )( ) . ( ),  ( )( ) . ( ),        0.

ku r k u r k r k u r if k

ku r k u r k r k u r if k

υ

υ

= = ≥

= = <
 

3. Fuzzy equation 

We are interested in finding a real solution of the fuzzy equation (if exist) in 
general form 

1 1 0( ) ( ) ,n nA f x A f x A+ + =  (3) 

where 1EAi ∈ and )(xfi  (for i =  1, ..., n) are real functions. 
For getting an approximate solution, an architecture of feed-forward neural network 

equivalent to Eq. (3) is built. The network is shown in Figure 1. 

 
Figure 1. The proposed neural network. 

 

3.1 Input-output relation of each unit 
 

Consider a two-layer FFNN2 with n input neurons and one output neuron. It is 
clear that the input vector, the target output are triangular fuzzy numbers and 
connection weights are crisp numbers. When a fuzzy input vector A = (A1, A2, ... ,An) is 
presented to the FFNN2, then the input-output relation of each unit can be written as 
follows (see Figure 1): 
Input units: 
The input neurons make no change in their inputs, so: 

Oi =  Ai , i =  1, 2, ..., n. (4) 
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Output unit: 
Y = f (Net), 

1

( . ),
n

i i
i

Net w O
=

= ∑  (5) 

where Ai is a triangular fuzzy number and wi  is a crisp connection weight. The relations 
between the input neurons and the output neuron in Eqs. (4)-(5) are defined by the 
extension principle [23] as in Hayashi et al. [12] and Ishibuchi et al. [14]. 
3.2 Calculation of fuzzy output 

The fuzzy output from of neuron in the second layer is numerically calculated for 
crisp weights and level sets of fuzzy inputs. The input-output relations of the fuzzy 
neural network as shown in Figure 1 can be written for the α -level sets as follows: 
Input units: 

,   1, ..., .O A i ni i
α α   = =     (6) 

Output unit: 
Let f  be an one-to-one activation function. Now we have: 

[ ] [ ]

[ ] [ ]
1

( ),

( . ).
n

i i
i

Y f Net

Net w O

α α

α α

=

=

= ∑
 (7) 

From Eqs. (6)-(7), we can conclude that the α -level sets of the fuzzy output Y are 
calculated from those of the fuzzy inputs and crisp weights. From Eqs. (1)-(2), the 
above relations are transformed to following form: 
Input units: 

[ ] [ ] [ ] [ ] [ ], , ,      1, , .i i i i il u l uO O O A A i nα α α α α   = = =       

Output unit: 

[ ] [ ] [ ] [ ] [ ], ( ), ( ) ,l u l uY Y Y f Net f Netα α α α α   = =     (8) 

where 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

,

( . ) ( . ), ( . ) ( . ), ,

l u

i i i i i i i il u u l
i M i C i M i C

Net Net Net

w O w O w O w O

α α α

α α α α

∈ ∈ ∈ ∈

 = = 
 

+ + 
 
∑ ∑ ∑ ∑

 

where { } { } { } 0 ,  0   and 1, , .i iM i w C i w M C n= ≥ = < =   

Lemma 1. Let fuzzy equation 01
. ( )n

i ii
A f x A

=
=∑  has a solution for real crisp number x, 

then 
1 where      ( ( )).n

i iD D domain f xϕ =≠ = ∩  
Proof. Let Rx ∈0 be a solution of Eq. (3). Consequently, we can write: 

1 1 0 0 0( ) ( ) ,n nA f x A f x A+ + =  
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and it follows from the above relation that )( 0xfi  exists. It is clear that ∈0x  domain 
))(( xfi  and consequently φ≠∩∈ = ))((   10 xfdomainx i

n
i  

Corollary 1. The necessary condition for existence solution of Eq. (3) is .φ≠D  
An architecture of FFNN2 solution to Eq. (3) has been given in Figure 1. The 

modelling scheme is designed with the simple and versatile fuzzy neural network 
architecture. Now let A0 be the target output corresponding to the fuzzy input vector A 
= (A1, ..., An). We want to define a cost function for the α -level sets of the fuzzy 
output Y and the corresponding target output A0: 

,l ue e eα α α= +  (9) 

where 

[ ] [ ]

[ ] [ ]

2
0

2
0

( )
,

2
( )

.
2

l l
l

u u
u

A Y
e

A Y
e

α α

α

α α
α

−
=

−
=

 

In the cost function (9), α
le  and α

ue  can be viewed as the squared errors for the 
lower limits and the upper limits of the α -level sets of the fuzzy output Y and target 
output A0, respectively. Now the cost function for the input-output pair {A; A0} is 
obtained as: 

.e eα

α

= ∑  (10) 

3.3 Learning algorithm of the FFNN2 

Let a real quantity 0x  is initialized at random value for variable x. The main aim of 
this subdivision is to offer an algorithm for adjusting the parameter x0 and connection 
weight wi . For real parameter x0 adjustment rule can be written as follows: 

0 0 0( 1) ( ) ( ),x t x t x t+ = + ∆  (11) 

0 0
0

( ) ( 1),ex t x t
x

α

η γ∂
∆ = − ⋅ + ⋅ ∆ −

∂
 (12) 

where t is the number of adjustments, η   is the learning rate and  γ  is the momentum 

term constant. Thus our problem is to calculate the derivative 
0x

e
∂
∂ α

 in (12). The given 

derivative can be calculated from the cost function αe  and by using the input-output 

relations (6)-(7). The derivative 
0x

e
∂
∂ α

 can be calculated as follows: 

0 0 0

,ul eee
x x x

ααα ∂∂∂
= +

∂ ∂ ∂
 (13) 

where 
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[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

0 0

0 0

,

,

l l l l

l l

u u u u

u u

Y Nete e
x xY Net

Y Nete e
x xY Net

α αα α

α α

α αα α

α α

∂ ∂∂ ∂
= ⋅ ⋅

∂ ∂∂ ∂

∂ ∂∂ ∂
= ⋅ ⋅

∂ ∂∂ ∂

 

and 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

0 0
10 0

0 0
10 0

( ) ( ( )) ( ( )),

( ) ( ( )) ( ( )).

n
l l i

i i i il u
i i M i Ci

n
ju u

i i i iu l
i i M i Ci

Net Net w A f x A f x
x w x

Net Net w
A f x A f x

x w x

α α
α α

α α
α α

= ∈ ∈

= ∈ ∈

∂ ∂ ∂ ′ ′= ⋅ = ⋅ + ⋅
∂ ∂ ∂

∂ ∂ ∂
′ ′= ⋅ = ⋅ + ⋅

∂ ∂ ∂

∑ ∑ ∑

∑ ∑ ∑
 

Consequently 

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

0 0 0 0

0 0 0 0

( ) ( ( ) ( ) ( ( )))

( ( ) ( ) ( ( ))) ( 1),

i i il l l u u u
i M

i i il l u u u l
i C

x t A Y A A Y A f x t

A Y A A Y A f x t x t

α α α α α α

α α α α α α

η

η γ

∈

∈

  ′∆ = ⋅ − ⋅ + − ⋅ ⋅ + 

  ′⋅ − ⋅ + − ⋅ ⋅ + ⋅ ∆ − 

∑

∑
 

where { } { } 0 ,  0i iM i w C i w= ≥ = < and { }.,,1 nCM =∪ After adjusting the 

parameter 0x  by using Eqs. (11)-(12), the connection weights are updated as follows: 

0( 1) ( ( 1)),    1, , .i iw t f x t i n+ = + =   
Let us assume that input-output pair {A; A0} where A = (A1,...,An) are given as 

training data and also m values of −α level sets (i.e. mααα ,,, 21  ) are used for the 
learning of fuzzy neural network. Then the learning algorithm can be summarized as 
follows: 
Learning algorithm 

Step 1:  0  ,0 >> γη  and Emax > 0 are chosen. Also crisp quantity Dx ∈0  is 
initialized at random value. 

Step 2: Let t :=  0 where t is the number of iterations of the learning algorithm. Then 
the running error E is set to 0. 

Step 3: Calculate the crisp connection weights as follows: 
0( ) ( ( )),   1, , .i iw t f x t i n= =   

Step 4: Let t :=  t +  1. Repeat Step 5 for  .,,, 21 mαααα = . 
Step 5: 

i. Forward calculation: Calculate the α -level set of the fuzzy output Y by 
presenting the −α level set of the fuzzy input vector A. 
ii. Back-propagation: Adjust the parameter 0x  using the cost function (9) for 
the α -level sets of the fuzzy output Y and the target output A0. Then update the 
weights by using Step 3. 

Step 6: Cumulative cycle error is computed by adding the present error to E. 
Step 7: The training cycle is completed. For E < Emax terminate the training 

session. If E > Emax then E is set to 0 and we initiate a new training cycle by going 
back to Step 4. 
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4. Numerical examples 

To show the behavior and properties of the proposed method, four examples have 
been solved in this section. For each example, the computed values of the approximate 
solution are calculated and the cost function is plotted over a number of iterations. 
Example 4.1. Consider the following fuzzy equation: 

3(1, 2,3) (2,3,4)sin( ) (3, 4,5) (1,2,3).xe x x+ + = , 
with the exact solution is 0=x  and Rx∈ . In this example, we apply the proposed 
method to approximate solution of this fuzzy equation. The training pattern is as 
follows: 

{ } { }0, (1, 2,3), (2,3, 4), (3, 4,5);(1,2,3) .A A =  

The FFNN2 is trained with three input units and single output neuron. The training 
starts with 10 =x ,  η  = 0.001 and  γ  = 0.001. Table 1 shows the approximated 
solution over a number of iterations and Figures 2 and 3 show the accuracy of the 
calculated solution ).(0 tx  

Table 1. The approximated solutions with error analysis for Example 4.1 

t )(0 tx  e  t )(0 tx  e  
1 0.83914 861.0975 21 0.011710 0.0522081 
2 0.70215 462.5263 22 0.009246 0.0325274 
3 0.58561 256.2918 23 0.0072979 0.0202522 
4 0.48657 150.7682 24 0.0057581 0.0126028 
5 0.40254 90.27531 25 0.004542 0.0078392 
6 0.33146 55.26543 26 0.003582 0.0048745 
7 0.27161 34.36732 27 0.002824 0.0030302 
8 0.22148 21.59092 28 0.002226 0.0018833 
9 0.17975 13.64433 29 0.001755 0.0011702 
10 0.14524 8.645593 30 0.001383 0.0007271 

 
Figure 2. The cost function for Example 4.1 over the number of iterations. 
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Figure 3. Convergence of the approximated solution for Example 4.1. 

 
Example 4.2. Let fuzzy equation 

2 4( 1,0,1) ( 2,0, 2) ( 3,0,3)sin( 1) ( 3,0,3),x x x− + − + − − = −  

with the exact solution 1=x . Similarly, we assumed that 5.00 =x , η   = 0.01 and γ  = 
0.01. Numerical result can be found in Table 2. Also Figures 4 and 5 show the 
accuracy of the solution ).(0 tx  

Table 2. The approximated solutions with error analysis for Example 4.2 

t )(0 tx  e  t )(0 tx  e  
1 0.58610 420.5535 13 0.97840 0.0245014 
2 0.66124 356.6554 14 0.98358 0.0221424 
3 0.72595 303.7533 15 0.98753 0.0200111 
4 0.78074 259.7104 16 0.99054 0.0180855 
5 0.82634 222.8538 17 0.99283 0.0132040 
6 0.86367 191.8637 18 0.99456 0.0076470 
7 0.89378 165.6911 19 0.99588 0.0044163 
8 0.91775 143.4962 20 0.99688 0.0025451 
9 0.93663 124.6025 21 0.99764 0.0014644 
10 0.95138 108.4619 22 0.99821 0.0008415 

 

 
Figure 4. The cost function for Example 4.2 over the number of iterations. 
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Figure 5. Convergence of the approximated solution for Example 4.2. 

 

Example 4.3. We consider the fuzzy equation 
( 1)( 2, 1,1) (1,2,3) tan( ( 1)) (3,5,6) ln (2,6,10),

4
x e xe xπ +− − + + + =  

With the exact solution 0=x . Learning is started with 5.00 −=x , η  = 0.002 and  γ  = 
0.002. Similarly, Numerical result can be found in Table 3. Figures 6 and 7 show the 
accuracy of the approximate solution ).(0 tx   

Table 3. The approximated solutions with error analysis for Example 4.3 

t )(0 tx  e  t )(0 tx  e  
1 -0.38289 187.7403 33 -0.0034570 0.009737422 
2 -0.30599 101.4838 34 -0.0030276 0.007466416 
3 -0.25043 62.25337 35 -0.0026515 0.005725975 
4 -0.20813 40.74910 36 -0.0023223 0.004391846 
5 -0.17484 27.75027 37 -0.0020343 0.003368974 
6 -0.14804 19.40627 38 -0.0017816 0.002584605 
7 -0.12610 13.82995 39 -0.0015606 0.001983039 
8 -0.10792 9.995062 40 -0.0013671 0.001521611 
9 -0.09271 7.301395 41 -0.0011976 0.001167634 
10 -0.07988 5.378616 42 -0.0010491 0.000896059 

 
Figure 6. The cost function for Example 4.3 over the number of iterations. 
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Figure 7. Convergence of the approximated solution for Example 4.3. 

 
Example 4.4. Consider the fuzzy equation 

2 4(2,4,6)sin( ) 2cos ( 1) ( 2, 1,0) (2,5,8),
2

x x xπ
+ − + − − =  

with the exact solution 1=x . Using a similar manner which has been described in 
previous examples, training is started with 5.10 =x , η  =0.01 and γ   = 0.01. 
Numerical result can be found in Table 4. Similarly, Figures 8 and 9 show the 
accuracy of the solution ( ).x t  

Table 4. The approximated solutions with error analysis for Example 4.4 

t )(0 tx  e  t )(0 tx  e  
1 1.3887 640.4183 11 1.0135 0.493675900 
2 1.2974 322.2644 12 1.0092 0.228763600 
3 1.2234 163.8896 13 1.0062 0.105645100 
4 1.1647 83.1223 14 1.0042 0.048672060 
5 1.1193 41.67327 15 1.0029 0.022387090 
6 1.0850 20.56737 16 1.0019 0.010285530 
7 1.0598 9.988083 17 1.0013 0.004721960 
8 1.0416 4.780992 18 1.0009 0.002166658 
9 1.0287 2.261678 19 1.0006 0.000993581 
10 1.0197 1.060221 2 -------- --------------- 

 
Figure 8. The cost function for Example 4.4 over the number of iterations. 
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Figure 9. Convergence of the approximated solution for Example 4.4. 

5. Conclusions 

In this paper, a new architecture of feed-forward neural networks has been 
proposed to approximate solution of a fuzzy polynomial. Presented FFNN2 in this 
study is a numerical method for calculating unknown coefficients in the given 
equation. It is clear that to get the best approximating solution of the equation, number 
of iterations must be chosen large enough. With the availability of this methodology, 
now it will be possible to investigate the approximate solution of other kinds of fuzzy 
equations. The analyzed examples illustrate the ability and reliability of the present 
method. The obtained solutions, in comparison with exact solutions admit a remarkable 
accuracy. 
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