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Abstract

The vehicle routing problem with simultaneous pickup and delivery (VRPSPD)
is a well-known combinatorial optimization problem which addresses provided
service to a set of customers using a homogeneous fleet of capacitated vehicles. The
objective is to minimize the distance traveled. The VRPSPD is an NP-hard
combinatorial optimization problem. Therefore, practical large-scale instances of
VRPSPD cannot be solved by exact solution methodologies within acceptable
computational time. Our interest was therefore focused on meta-heuristic solution
approaches. For this reason, a modified tabu search (PA) is proposed for solving
the VRPSPD in this paper. tComputational results on several standard instances of
VRPSPD show the efficiency of the PA compared with other meta-heuristic
algorithms.

Keywords: Vehicle Routing Problem; Tabu Search; NP-hard ProblemSmultaneous
Pickup and Delivery

1. Introduction

The vehicle routing problem (VRP) has played anartgmt role in supply chains,
where such problems often arise in the first transpion step (to collect agricultural
products, for instance) or in the final distributiphase toward customers. A typical
VRP aims to find a set of tours taken by severhlales in order to transport loads from
a depot to a lot of customers and to return todiyeot without exceeding the capacity
constraints of each vehicle at minimum cost. Sitiee customer combination is not
restricted to the selection of vehicle routes, VRPconsidered as a combinatorial
optimization problem where the number of feasildkitsons for the problem increases
exponentially with the increase in the number aftomers. delivery and pickup
The vehicle routing problem with simultaneous pgkand delivery (VRPSPD) is a
well-known problem in the area of network and operaresearch. In this problem, the
vehicles are not only required to deliver goodsustomers but also to pick some goods
up at customer locations. It should be noted thatMRPSPD can be seen as a pickup
and delivery problem (PDP) in the recent clasdificaon static PDP. The VRPSPD is
also called the multi-vehicle Hamiltonian one-toapdo-one PDP with combined
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demands. By this definition, the deliveries arenfra depot and the pickups will be
returned to the depot. The customer demand is aeedbwhich means that there is at
least one customer with non zero pickup and delivedemand.
The VRPSDP is characterized by the following: &fflef identical vehicles located at
the depot are used to serve customers distribueadjrgphically in the area. The
capacity of each vehicle is called Q. A customequme@s a given shipment to be
delivered and another load to be picked up duringingle visit by a vehicle. The
objective is to design a set of minimum cost routeserve all customers so that the
load on a vehicle is below vehicle capacity Q aheaoint on the route. An example of
a single solution consisting of a set of routesstacted for a VRPSPD is presented in
Figure 1.
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Figure 1. A solution of VRPSPD

It is noted that the VRPSDP is different from ththes two related problems
including VRP with Backhauls (VRPB) and CVRP. Onavious difference among
CVRP, VRPB and VRPSDP is the variation of the viehicad during the whole route.
In the CVRP, the load decreases (increases) mooagsbnwhile in the VRPB, first, it
decreases to zero and then starts to increasenelait the two cases is true in the
VRPSDP. In this problem, the load of a vehicle esrirregularly and the maximum
load may appear in the middle of the route. Furtiwee, if the total demand of all the
customers assigned to the same vehicle does ne¢@xhbe capacity limit in the CVRP,
the feasibility of the route is always maintained,matter what the visiting sequence is.
There is a similar case in VRPB. However, it istgdiifferent in the VRPSDP.

VRPSDP was introduced by Min [1] to solve a re& Iproblem of transporting
books between libraries. He used the clusterdinsk route second approach to solve the
problem. A TSP problem is solved during the routpitase and if the TSP route
violates the vehicle capacity constraint, the T&bblem is resolved by penalizing the
arc violating the vehicle capacity constraint. Tteehniques used for solving the
VRPSPD can be categorized into exact, heuristic meth-heuristic methods. Exact
approaches such as Lagrangean relaxation and bramthbound for solving the
VRPSPD are successfully used only for relativelyalrproblem sizes but they can
guarantee optimality based on different techniqudsese techniques use algorithms
that generate both a lower and an upper bound ertrtte minimum value of the
problem instance. If the upper and lower bound @dm a proof of optimality is
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achieved. DelllAmico et al. First proposed an exaethod based on column generation,
dynamic programming, and branch and price methothfs problem [2]. However, the
computational complexity of VRPSPD is evident fraghe computational result, in
which an hour of computational time sometimes isamough for solving a small size
problem consisting of 40 customers.

VRPSPD is an NP-hard problem in the strong sensause when either all pickup
demands or all delivery demands are set to zeeoptbblem reduces to the capacitated
vehicle routing problem (CVRP) which is a known R&d problem. In other words,
when the problem size is increased, the exact rdstbannot solve it. Consequently,
heuristic methods are used for solving these prabland they settle for the suboptimal
solutions in a reasonable amount of time for instanwith large sizes. Salhi and Nagy
[3] solved VRPSDP by using the insertion-based iseamethod which they designed
for vehicle routing problem with backhaul and mixexhd (VRPBM). They also
extended the VRPBM heuristic to multi-depot versminthe problem. Dethloff [4]
described the application of VRPSDP in reverseskigg. He proposed an insertion-
based heuristic method which uses the concepeafesidual load.

A new kind of heuristic algorithm which basicallyets to combine basic heuristic
methods in higher level frameworks which are ainagdefficiently and effectively
exploring a search space has emerged in the laga@8. Nowadays these methods are
commonly called meta-heuristics. These algorithaeagehigher performance than exact
and heuristic ones. As a result, nowadays they mageived much attention from
researchers and scientists in order to solve ccaatdmial optimization problems.
Because of using the randomization concept in kefarcfinding better solutions, this
group of algorithms is more effective in escapingnf local optimum and can obtain
more quality solutions. That is why the recent m#tions are all based on meta-
heuristic approaches. Tang and Galvao developatiiagearch (TS) algorithm to solve
VRPSPD. In their formulation, the VRPSPD is formeath to minimize the total
traveled distance of the route considering maxindistance and maximum capacity
constraints on the vehicles [5]. Emmanouil et apmsed a hybrid solution approach for
VRPSPD through incorporating the rationale of twellvknown metaheuristics which
have proven to be effective for routing problemiasts, namely, TS and guided local
search [6]. The performance of their metaheuralgorithm was tested on benchmark
instances involving 50 to 400 customers. It produbggh quality results, improving
several best solutions previously reported. Zhanagl eleveloped a new scatter search
approach for the one of the most important exterssiof VRPSPD called stochastic
travel time VRPSPD by incorporating a new chanaastrained programming method
[7]. They also proposed a genetic algorithm apgrdacdhis problem. In this paper, the
Dethloff data will be used to evaluate the perfano®ea characteristics of both
approaches. The computational results suggesttligaiscatter search solutions are
superior to the genetic algorithm solutions.4-opt

VRPSPD In the following parts of this paper, thasib and the proposed idea are
explained In Section 2. In Section 3, the PA is pamd with some of the other
algorithms on standard problems belonging to VRPSBEary. In Section 4, the
conclusions are presented.
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2. Solution method

Tabu search

Most engineering optimization algorithms are based numerical linear and
nonlinear programming methods which require subistagradient information and
usually seek to improve the solution in the neighbod of a starting point. These
algorithms, however, reveal a limited approachdmplicated real-world optimization
problems. If there is more than one local optimumthe problem, the result may
depend on the selection of an initial point and ebéained optimal solution may not
necessarily be the global optimum. Meta-heuridtjo@thms have been one of the most
important groups for solving combinatorial optintina problems. These algorithms
designate a computational method which optimizesadlem by iteratively trying to
improve a candidate solution with regard to a giwegasure of quality. Furthermore,
the gradient search may become difficult and utstaiben the objective function and
constraints have multiple or sharp peaks. Metaistes make few or no assumptions
about the problem being optimized and can searcli N@ge spaces of candidate
solutions. However, meta-heuristics such as menagorithm, simulated annealing,
particle swarm optimization and ant colony optini@a do not guarantee that an
optimal solution will be found. These algorithmsvlabeen successfully applied to
many difficult optimization problems including TS®hicle routing problem, quadratic
assignment problem and job-shop scheduling probégen,

The TS is one of the most powerful meta-heuriskiprthms which has recently
received much attention from researchers and ssienThis algorithm which was first
proposed by Glover [8] is inspired by the princgtd Artificial Intelligence, especially
the use of memory. As a local search techniquan®$es from a current solution to the
best solution in its neighborhood by exploring sodution space at each iteration. The
main principle of the TS method is accepting neayiig solutions which deteriorate
the current objective function value in order teagse from premature local optimum
(Figure 2). The diagram pictured in Figure 3, ie ttoordinate plane. The horizontal

line labeled "X" is the x-axis and the verticalditabeled "Y" is the y-axis.

Figure 2. Escaping from local optimum

There are many important concepts in TS: tabu tidty tenure, aspiration criteria,
neighborhood and neighborhood size, intensificataiuersification, frequency-based
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memory, strategic oscillation, moves and evaluatanthe moves which are all
described as follows:

The tabu list is one of the ways of using memorystyring in a list the solutions
explored throughout the search or, more commormmesrelevant attributes of these
solutions. This tabu list has two main purposesptevent the return to the most
recently visited solutions in order to avoid cygliand to drive the search towards the
regions of the solution space which have not beg@hoesd yet but have great potential
for containing good solutions. When a single attiébis marked as tabu, this typically
results in more than one solution being tabu. Sofrtbese solutions, which must now
be avoided, could be of excellent quality and migbtt have been visited. To mitigate
this problem, "aspiration criteria” are introducddese criteria override a solution's
tabu state, thereby including the otherwise-exaudelution in the allowed set. A
commonly used aspiration criterion is to allow s$iolns which are better than the
currently-known best solution. In operational terntee TS consists of moving
successively, in each iteration, from one solut®®nto the best solution in its
neighborhood called N(S) which is not either in tabu list or if it is in the list it
satisfies some aspiration criteria.

The deterministic nature of the movements may cayskng phenomena to occur.
To avoid cycling, TS has declared Tabu the recenityted solutions or recently
applied moves for a specific number of iteratiofisbu Tenure). When the search
attempts to move towards a tabu declared state,titnsition is forbidden, unless it
improves the best solution ever encountered duhiagearch (aspiration criterion).

A successful application of TS needs a powerfuhtégue for search intensification
and diversification. The intensification is a dkgdiexploration of some regions of the
solution space which are usually in the vicinityaofood solution. The diversification is
leading the search to the promising regions ofdbletion space which has been not
explored yet. The successful application of TS megua good balance between
intensification and diversification.

A pseudo-code of TS for the TSP is presented ofritdere 3.

Tabu search
Input: s° /linitial solution;
0 * 0
S«S ,S «5§5,;
Given neighborhood function N(s), tabu list T(sjlaspiration condition A(S).
Repeat //main cycle

Find the best feasible solutie'rﬂ{ N(s) —T(s) +A(s)} :

s —s'; /Ireplace the current solution by the new
one.
If f(s) < f(s) thens — s; /Isave the best so far sohutio

Update tabu list;
Update neighborhood function;
Update aspiration condition;
Until termination criterion is satisfie

Figure 3. Pseudo-code of the TS
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The proposed algorithm

Now a modified tabu search (PA) is presented whishs a several local search
algorithm as neghibourhood procedure. In our apgrodahree main modification
respects to the TS have been made:

1. In order to be applied, the TS requires an ing@ution. The Nearest Neighbor
algorithm (NNA) is used to obtain initial solutioas one of the famous heuristic
algorithms.

2. The PA comprises three types of neighborhood mowdading 2-Opt, 0-1 and
1-1 exchanges. These moves are distinguishednmstef exchanges performed
to convert one tour into another. As it will be &iped later these moves are not
equally performed in each iteration.

3. To improve the TS further, the size of tabu listcsnsidered variable for
intensification and diversification policies. Thees of tabu list is considered a
minimum value for the diversification policy and naaximum value for the
intensification policy.

In order to be applied, the TS requires an inigalution. The Nearest Neighbor
algorithm (NNA) is used to obtain initial solutian§his method produces a feasible
solution that can be used as an initial solutiartiie TS. NNA is designed to be fast to
compute and to provide a starting solution so that TS may improve. First in this
algorithm, the vehicle type is selected, beginninth type 1. If none of the unrouted
customers is admissible in terms of the load cagrgiapacity of the vehicle, that type
of vehicle is increased by a unit and this is régeeauntil at least one of the unrouted
customers can be served by this type of vehicleenpards, the route which is assigned
to the chosen vehicle starts with the unroutedornst farthest from the depot. The next
customer to be inserted in the route will be the @amo has not been served yet and
who is nearest to the customers of the route. Ghstomer also has to be admissible in
terms of the vehicle’s load carrying capacity. Hedected customer is inserted in the
route before or after its NNA by taking into accouhe place which increases the
travelling distance by the least amount. This psecs repeated until no customer is
admissible in the current route. When this hapmemew vehicle is selected and the
whole process is repeated until all the customexsa@uted. The GENIUS algorithm of
[9] is composed of two procedures: GENI and US. G| is used to construct a TSP
tour and the US to improve this tour. In this methafter constructing all the routes, the
US is applied to each of the routes in order tatdryeduce the travel distance. In this
method, after constructing all the routes, the §/8pplied to each of the routes in order
to try to reduce the travel distance.

The neighborhood structure is an important keyuieain the performance of any TS
because it determines the extent and the qualitheotolution space explored. The PA
comprises three types of neighborhood moves inatu@+Opt, 0-1 and 1-1 exchanges.
These moves are distinguished in terms of exchgogidsrmed to convert one tour into
another and they can be described as follows:

2-Opt move. The most commonly encountered movéas2tOpt [10]. Suppose a
single route consists of the following set of nodes the given order 1%(0,1,...,k,0),
and let A={(i,i+1); (j,j+1)} is a set of two edges in;rwhich form a crisscross. 2-Opt
move eliminated the crisscross and reversed aosect the route by deleting the
branches (i,i+1), (j,j+1) and replacing them witls supplement (i,j), (i+1,j+1) to
reconstruct the route. In multiple routes, edggs1(j, and (j,j+1) belong to different
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routes but they form a crisscross again. The 2+@pie is applied exactly in the same
way as in the case of multiple routes. The mov@rented when it is considered
favorable for the performance of the entire aldonitin terms of objectives and
constraints. This move is demonstrated in FigurE24
0-1 Exchange move. This move transfers a node fterposition in one route to

another position in either the same or a differente. Consequently, while the initial
tour is (0,...,i,i+1,...,}-2, j-1,j,j+1,...,0), the impwed one is constructed as
©,...,1,},i+1,...,j-2, j-1,j+1,...,0). The move is grad when it is considered favorable
for the performance of the entire algorithm in teraf objective and constraints. This
move is demonstrated in Figure 5 [12].

Figure 4. 2-Opt mover for single route (left) and for multiple routes (right)

Figure5. 0-1 Exchange mover for single route (left) and for multiple routes (right)

1-1 Exchange move. This move swaps two nodes frittmerethe same or different
routes. Consequently, if it is supposed that thgalrtour consists of the set of nodes
©,...,i-1,i,i+1,...,j-1,j,j+1,...,0), the improved one tonstructed as (0,...,i-1,j,i+1,...,j-
1,i,j+1,...,0). The same procedure is conducted enctise of multiple routes. The move
is granted when it is considered favorable forgadormance of the entire algorithm in
terms of objective and constraints. This move sal@strated in Figure 6 [12].
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Figure 6. 1-1 Exchange mover for single route (left) and for multiple routes (right)

These moves are not equally performed in eachtibaréor two reasons: to diversify
the search and to keep the computing time at redéotevels. In each iteration all the
customers are candidates to be moved. Thereforaymbers of neighborhoods are
produced by the mentioned algorithm in which 30a88 35 percent of them belong to
2-Opt, 0-1 and 1-1 exchanges respectivelis the number of nodes in each problem).

Changing the size of Tabu list may serve as a gtdiwersification technique. It
works as follows: If the PA meta-heuristic has nptated a best solution for a pre-
specified number of consecutive iterations, it mhestdriven the search towards a part
of solution space which has not been explored gete(sification policy). Thus, the
length of Tabu list is incresed. After the diveistion policy, the search process is
intensified by decreasing the value of the Tabt il a number of consecutive
iterations. A pseudo-code of PA for the VRPSPDrespnted on the Figure 4.

Build s° as initial solution by Nearest Neighbor algorit(iiNA);

s s’

s« s°; /I the best know solution found;

Iter=0; Il number of iteratiotigt the best solution of algorithm has not changed

Consider 2-opt, 0-1 and 1-1 exchanges as neighbdruoation N(s)

T list T(s)= @;

:\/Iax(l)ength of tabu list=5;

ter=0;

D=4; /I if the best know siidun of the algorithm has not changed for D itenasi, the max length

tabu list is incresed.
Aspiration condition A(s) is satisfied if a betmlution will be gained in compared to previousutiohs.
Repeat //main cycle
Produce thenew solutions by using the 2-opt move (30 per¢ént) (35 percent) and 1-1
exchnages (35 percent).

Find the best feasible solutie’rD{ N(s) —T(s) + A(s)} :

Replace the current solutisrby the new ons';
If f(s) < f(s) then

S «§S;

Max length of tabu list=5;
Else
lter=iter+1
If iter>D
Max length of tabut#%0;
Iter=0;
End
End
Update list;
Until termination criterion is satisfied.
Output: s

Figure 4. Pseudo-code of the PA
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Parameter settings

Like any meta-heuristic algorithm, the solutionsguced by the PA were dependent
on the seed used to generate the sequence of psewdton numbers and on the
different values of the search parameters of tlgordhm. The parameter setting
procedure is necessary to reach the best balareedre the quality of the solutions
obtained and the required computational attempghduld be mentioned that there is no
way of defining the most effective values of theagmaeters. Therefore, they were
established based on perception and on experimé&hts.results confirm that our
parameter setting works well. Also In addition, tbetsolutions may exist. The most
influential parameters of the PA and their values|sted in Table 1.

Table 1: Parameter setting for meta-heuristic method

Description Value
The size of the tabu list 5-15
The size of the tabu Tenure 20
The number of initial solutions 1

The maximum number of consecutive iterations allowed when best solution has not
been updated

The number of consecutive iterations when the diversification policy is implemented 6
The number of consecutive iterations when the intensification policy is implemented 6

The number of iterations after which the meta-heuristic algorithm terminate if fails to
reach a new best solution

The maximum allowed running time 100

3. Computational experiments

The PA was coded in Matlab 7. All the experimen&enimplemented on a PC with
Pentium 4 at 2.4GHZ and 2GB RAM and Windows XP HdBasic Operating system.
Because the PA is a meta-heuristic algorithm, tbsults are reported for ten
independent runs. In this section, the algorithns wested on a set of VRPSPD
benchmark problems with sizes ranging from 50 t® @8des. Some numerical results
of comparison between the PA and the algorithm<hviobtained the best results in
Salhi and Nagy’s instances [13], namely those peddy Chen and Wu (CW) [14],
Wassan et al. (W) [15], Zachariadis et al. (Z) [18libramanian et al. 1 (S) [17] and
Subramanian et al. 2 (PVND) [18] are presented.

Table 2 shows the results of the PA for the VRP®@bchmark problem instances.
In this table, Columns 2-6 show the problem sizéha,number of vehicles v, the best
known solutions (BKS), the best value result of Bfeand the CPU time of the PA for
the best value result over the ten runs for eaocblpm. The left column indicates the
percentage of PA improvement compared to the BK&G

(value of Algorithm- value of BKS)
value of BKS
This table shows that the PA can be used to stlgeVRPSPD effectively. From

Table 2 it can be seen that among the 14 test gmhlthe maximum relative error is
2.72% and the average relative error is 0.34%.

Gap=100 x
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Table 2. Results of the PA for 14 VRPSPD instances

Instance n v BKS Best Time Gap
CMT1X 50 3 466.77 466.77 3.12 0
CMT1Y 50 3 466.77 466.77 3.45 0
CMT2X 75 6 668.77 672.35 6.67 0.54
CMT2Y 75 6 663.25 672.35 6.87 1.37
CMT3X 100 5 721.27 721.27 15.90 0
CMT3Y 100 5 721.27 721.27 17.31 0
CMT12X 100 5 644.70 662.22 16.92 2.72
CMT12Y 100 5a 659.52 659.52 19.51 0
CMT11X 120 4 835.26 835.26 25.90 0
CMT11Y 120 4 830.39 830.39 27.73 0
CMT4X 150 7 852.46 852.46 43.61 0
CMT4Y 150 7 852.35 852.46 39.12 0.01
CMT5X 199 10 1029.25 1029.25 70.91 0
CMT5Y 199 10 1029.25 1030.55 73.22 0.13

Table 3 presents the comparison of the best resdilisur algorithm with other
published Bio inspired research studies in termshef optimal solution found. It is
important to point out that Wassan et al. [15] nieave used another approach to
generate the instance CMTL1Y. The optimum solutibrths instance (466.77) was
found by means of the mathematical formulation gnésd in [2]. This value is greater
than the one obtained by Wassan et al. [15] (498.B6should be noted that the
optimum solution coincides with the solution found18] and by the PA.

Table 3. Comparison between PA and other metaheuristic algorithms

CW[14] W15] Z[16] S[17] PVND [18] PA BKS

BS V BS V BS V BS V BS V BS v
CMTLX 47852 3 468.30 3 469.80 3 466.77 3 466.77 3 466.77 3 466.77
CMTLY 480.78 3 458.96a 3 469.80 3 466.77 3 466.77 3 466.77 3 466.77
CMT2X 68851 6 668.77 6 68421 6 68421 6 684.21 6 672.35 6 668.77
CMT2Y 679.44 6 66325 6 68421 6 68421 6 684.21 6 672.35 6 663.25
CMT3X 74477 5 729.63 5 72127 5 72140 5 721.27 5 721.27 5 721.27
CMT3Y 723.88 5 74546 5 72127 5 72140 5 721.27 5 721.27 5 721.27
CMT12X 678.46 6 644.70 5 662.22 5 66222 5 662.22 5 662.22 5 644.70
CMT12Y 676.23 6 65952 6 662.22 5 66222 5 662.22 5 659.52 5 659.52
CMT11X 858.57 4 861.97 4 838.66 4 839.39 4 833.92 4 83526 4 835.26
CMT11Y 859.77 5 830.39 4 837.08 4 841.88 4 833.92 4 830.39 4 830.39
CMT4X 887.00 7 876.50 7 852.46 7 852.83 7 852.46 7 852.46 7 852.46
CMT4Y 85235 7 870.44 7 852.46 7 852.46 7 852.46 7 852.46 7 852.35

CMT5X 1089.22 101044.51 9 1030.55 10 1030.55 10 1029.25 10 1029.25 10 1029.25
CMT5Y 1084.27 101054.46 9 1030.55 10 1031.17 10 1029.25 10 1030.55 10 1029.25

The results of this comparison show that the PAgaiorse solutions than the CW
in CMT4Y and it gains better solutions than the @Wbther problems. Furthermore,
the results indicate that although the W obtainbe#ter solution than the PA for
CMT2X, CMT2Y and CMT12X, this algorithm cannot m&m this advantage in the
rest of the examples and the PA yields better aalespolutions than this algorithm for
other instances. The S in not a powerful algoritbnsolving instances of VRPSPD and
gains worse or equal solutions compared to the &Aafl instances. Moreover, the
computational experiments also show that in genéral PA produces better results
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compared to PVND algorithms in terms of the quatityhe solution and could find the
best solutions for 8 of the 14 instances.

4. conclusion

In this paper, a new algorithm based on TS forieghthe VRPSPD is discussed.
The main idea is to give extra emphasis on theajibbst and iteration-best solutions.
Experiments are implemented to evaluate the algorg performance on some test
instances from the literature. Computational resdikmonstrate that our algorithm is
effective in solving VRPSDP. It seems that the coation of the PA and ant colony
system or using strong local algorithms like Lirrrkgan can yield better results for the
PA. This approach can be extended for further rekeaot only to other types of
routing problems including BVRP and school bus irautproblem but also to more
complex cases like assignment and scheduling prable
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