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Abstract 
Congestive heart failure (CHF) remains to be one of the major cardiovascular 

disorders in the world. Due to the prevalence of CHF related issues, it is prudent to 
seek out new prognostic predictors that would facilitate the prevention, monitoring, 
and treatment of the disease on a daily basis. A detection approach using entropy 
measures extracted from surface electrocardiograms (ECGs) and classification for 
congestive heart failure (CHF) is presented in this paper. Four different entropies 
are used: approximate entropy (ApEn), sample entropy (SampEn), permutation 
entropy (PE), and energy entropy (EE). These entropies are employed to evaluate 
the irregularity and complexity of ECG time series and 
recognizing CHF patients from normal s
operating characteristic (ROC) plots show that among the four entropies
outperforms other three entropies. These tests also indicate the 
surface ECGs to effectively discriminate 
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1. Introduction 

Congestive heart failure (CHF)
a healthy physiological state. CHF usually occurs when the cardiac tissue becomes 
ischemic due to coronary vessel blockage or cardiac diseases, like cardiomyopathy, 
weaken the heart muscles. This in tu
and disrupts the normal electrophysiological processes. 
advances in the field of medicine, 
practice and mortality rate has remained 
issues, it is prudent to seek out methodologies that would facilitate the prevention, 
monitoring, and treatment of heart disease on a daily basis. 
in the literature used HRV measure
[12]. A small number of studies used 
CHF detection [13]-[18]. In a recent publication we showed that 
analysis applied to surface ECG signals could effectively discriminate CHF patients 
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Congestive heart failure (CHF) remains to be one of the major cardiovascular 
disorders in the world. Due to the prevalence of CHF related issues, it is prudent to 
seek out new prognostic predictors that would facilitate the prevention, monitoring, 

tment of the disease on a daily basis. A detection approach using entropy 
measures extracted from surface electrocardiograms (ECGs) and classification for 
congestive heart failure (CHF) is presented in this paper. Four different entropies 

mate entropy (ApEn), sample entropy (SampEn), permutation 
entropy (PE), and energy entropy (EE). These entropies are employed to evaluate 
the irregularity and complexity of ECG time series and discuss the viability
recognizing CHF patients from normal subjects. Student’s t-tests and 
operating characteristic (ROC) plots show that among the four entropies
outperforms other three entropies. These tests also indicate the feasibility 
surface ECGs to effectively discriminate CHF patients from normal subjects.

Irregularity, Surface Entropy,  EnergyComplexity, Congestive heart failure, 

ongestive heart failure (CHF) occurs when heart cannot effectively supply blood for 
a healthy physiological state. CHF usually occurs when the cardiac tissue becomes 
ischemic due to coronary vessel blockage or cardiac diseases, like cardiomyopathy, 
weaken the heart muscles. This in turn decreases the cardiac mechanical functionality 
and disrupts the normal electrophysiological processes. Despite numerous recent 
advances in the field of medicine, CHF has been difficult to manage with in clinical 
practice and mortality rate has remained high [1]. Due to the prevalence of CHF related 
issues, it is prudent to seek out methodologies that would facilitate the prevention, 
monitoring, and treatment of heart disease on a daily basis. The majority of the studies 
in the literature used HRV measures for the detection and prognosis of the disease 

small number of studies used surface ECG characteristic and/or morphology for 
In a recent publication we showed that symbolic dynamics 

analysis applied to surface ECG signals could effectively discriminate CHF patients 
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Congestive heart failure (CHF) remains to be one of the major cardiovascular 
disorders in the world. Due to the prevalence of CHF related issues, it is prudent to 
seek out new prognostic predictors that would facilitate the prevention, monitoring, 

tment of the disease on a daily basis. A detection approach using entropy 
measures extracted from surface electrocardiograms (ECGs) and classification for 
congestive heart failure (CHF) is presented in this paper. Four different entropies 

mate entropy (ApEn), sample entropy (SampEn), permutation 
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from healthy subjects [19]. In this work we adopt the latter approach. Cardiovascular 
regulation involves a complex system of different interacting control mechanisms. 
Clinical studies have shown that cardiovascular dysfunctions reduce the complexity in 
HR dynamics. Therefore it seems reasonable to hypothesize that the cardiovascular 
dysfunctions must also alter the regularity and complexity of the ECG rhythmic 
variations. Measures from nonlinear dynamics must, in principle, allow insight into the 
evolution of complexity of underlying cardiac activity. Entropy-based measures are 
powerful methods that can be used to analyze the degree of irregularity and complexity 
of short time series. Also entropy measures have been shown to characterize chaotic 
behavior in time series data [20]. Further, these measures have properties that make 
them suitable for physiological data analysis. In this study, we compare the 
discrimination power of modified energy entropy (an entropy related feature) with those 
of three entropy measures (approximate entropy, sample entropy and permutation 
entropy) in separating normal subjects from patients with CHF. The prime advantage of 
using these measures lies in the possibility of applying them to both deterministic and 
stochastic systems. This study represents the first step in demonstrating the feasibility of 
using entropy measures for recognition of raw ECG signal changes in CHF subjects. 
 

2. Methods and materials 

The following subsection 2.1 discusses the surface ECG records used for analysis. 
The next five subsections 2.2, 2.3, 2.4, 2.5, and 2.6 discuss in depth the measures of 
complexity and irregularity used in this study. Subsection 2.7 describes the statistical 
tests and receiver operating characteristic (ROC) plots to evaluate the performance 
parameters. 
 
2.1 Clinical data 

The surface ECG records used are from the benchmark PhysioNet databases [21]. 
The work involved 18 ECG records from MIT-BIH normal sinus rhythm (NSR) 
database and ECG records of 15 subjects with severe CHF (NYHA class 3-4) from 
BIDMC CHF database. The NSR database includes 5 men, aged 26 to 45 years, and 13 
women, aged 20 to 50 years. The CHF database includes 11 men, aged 22 to 71 years, 
and 4 women, aged 54 to 63 years. From each record the modified limb lead II was only 
considered for analysis. The resolution is 200 samples per mV. The sampling frequency 
of normal sinus rhythm signal is 128 Hz and that of CHF signal is 250 Hz. Since the 
sampling frequency does influence upon the calculated parameters it is necessary to 
have the same sampling frequency for all the records. For this reason ECG signals from 
normal database are first re-sampled at 250 Hz. Then each record, in normal sinus 
rhythm and CHF databases, is divided into segments of equal time duration (18 sec), 
with 4500 samples/segment. A total of 3510 segments from normal sinus rhythm and a 
total of 2925 segments from CHF data base are analyzed. 

 
2.2 Measures of irregularity and complexity 

Entropy is a concept which addresses randomness and predictability, with smaller 
entropy associated with higher predictability and larger values associated with 
randomness [22]. In the framework of time series analysis, entropy is defined as a 
measure of rate of generation of information [23]. Mainly there are two families of 



 

Journal of Advances in Computer Research  (Vol. 6, No. 4, November  2015) 1-11 
 
 

3 

entropy estimators: spectral entropies and embedding entropies [24]. Spectral entropies 
are evaluated from frequency spectra, while embedding entropies, usually are computed 
directly from time series. In this study three embedding entropies (approximate entropy, 
sample entropy, and permutation entropy) and a measure related to spectral entropy 
(modified energy entropy) are used. These nonlinear measures are tested, each 
computed for different lengths of ECG time series to investigate irregularity and 
complexity. 

 2.3 Approximate entropy (ApEn) 
Approximate entropy (ApEn) is a nonlinear measure of irregularity and complexity 

in the data without any a priori knowledge of the system generating them [25]-[29]. The 
presence of repetitive patterns of fluctuation in the time series renders it more 
predictable than a time series in which such patterns are absent. The approximate 
entropy measures the logarithmic probability that a series of data points a certain 
distance apart will exhibit similar relative characteristics on the next incremental 
comparison with the state space. Time series with a greater likelihood of remaining the 
same distance apart upon comparison will result in lower approximate entropy values, 
while data points that exhibit large differences in distances between data points will 
result in higher values. ApEn is scale invariant and model independent, evaluates both 
dominant and subordinant patterns in the data, and discriminates series for which clear 
feature recognition is difficult. It is immune to low level noise and robust to meaningful 
information with a reasonable number of data points. Large values of ApEn indicate 
more irregularity in the data and vice versa. In the following a short description of the 
formal implementation of the ApEn is given, for further details see [26].  Given a time 
series with M data points, x(1), x(2),…, x(M). To compute ApEn m-dimensional vector 
sequences, pm(i), are constructed from data series like [pm(1), pm(2), …, pm(M-m+1)], 
where 1≤  i  ≤ M-m+1. If the distance between two vectors pm(i) and pm(j) is defined as 
|pm(i) - pm(j)|, then 

Ci
m(d) = [Number of vectors such that | pm(i) - pm(j)| < d] / (M-m+1), where m specifies 

the pattern length and d defines the criterion of similarity.   Ci
m(d) is considered as the 

mean of the fraction of patterns of length m that resemble the pattern of the same length 
that begins at index i. ApEn is computed using the eqn. (5) below. 

Let Фm(d) =  ∑i  ln(Ci
m(d)) / (M-m+1)  for 1≤ i ≤ M-m+1 

and Фm+1(d) =  ∑i  ln(Ci
m+1(d) / (M-m)    for 1≤ i ≤ M-m 

then ApEn(m, d, M) = Фm(d) - Фm+1(d)                                                              (1) 

Pincus and Goldberger [27] have shown that with m = 2, d = 10−25% of the standard 
deviation of the M  data points/ samples (M ≥ 100 data points) will lead to statistically 
reliable and reproducible results. Comparisons between sequences must be made with 
the same values of m, d, and M. In this study, m = 2, d = 0.2 and M = 4500 are used. 
Smaller values of ApEn imply a greater likelihood that similar patterns of 
measurements will be followed by additional similar measurements. If the time series is 
highly irregular, the occurrence of similar patterns will not be predictive for the 
following measurements, and ApEn will be relatively large. This is the key to a measure 
of irregularity: small values of ApEn indicate regularity and large values imply 
substantial fluctuations or irregularity in the time series. The values typically vary in the 
range 0 to 2 [28]. Values near zero are consistent with greater periodicity or regularity. 
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Conversely, values closer to two represent greater irregularity. ApEn for a periodic 
signal such as sine wave will be close to zero, while for a random signal such as white 
noise will be near two. Deterministic signals will have ApEn values in between 
depending on the order of regularity. 

2.4 Sample entropy (SampEn) 
Approximate entropy algorithm counts each sequence as matching itself to avoid the 

occurrence of ln(0) in the calculations. This leads to bias of approximate entropy and as 
an implication approximate entropy lacks two important properties. First, approximate 
entropy depends more on record length and will lead to lower values for short records. 
Second, it lacks relative consistency. This means, if approximate entropy for one data 
set is higher than the other, it should, but does not remain higher for all conditions 
tested. This drawback is important and it is to be noted that approximate entropy is a 
relative measure for comparing data sets [27]. These problems associated with 
approximate entropy are resolved by using sample entropy which reduces the above 
mentioned bias. The sample entropy, on the other hand, “is largely independent of 
record length and shows relative consistency where approximate entropy does not” [25]. 
The sample entropy represents the negative natural logarithm of the conditional 
probability that two sequences similar for m points remain similar at the next point [30]. 
Given a time series with N data points, x1, x2,…, xN. To compute SampEn m-
dimensional vector sequences, yi(m) = {xi, xi+1, …, xi+m-1}, where 1≤  i  ≤ N-m+1. Then 

Bi
m(r) = ( ∑j θ(r −  | |yj(m) – yi(m)| |∞) ) / (N-m-1)    for j ≠ i, 1 ≤ j ≤ N−m                   (2) 

where θ is the Heaviside function, ||.||∞ is the maximum norm defined by ||yj(m) – 
yi(m)||∞ = max0≤k≤m-1|xj+k – xi+k|. The sum in the above equation represents the number of 
vectors yj(m) that are within a circular distance r from yi(m) in the reconstructed phase 
space. However, the cases of self matches indicated by j = i are avoided from the count. 
This brings down the bias in the estimation of SampEn [25]. In the next step the density 

is computed as 
Bm(r) = ( ∑i Bi

m(r) ) / (N-m)   for 1 ≤  i  ≤  N-m                                                           (3) 
Computations similar to above are then performed on a (m+1)-dimensional 

reconstructed space to arrive at the equations below. 
Ai

m(r) = ( ∑j θ(r −  | |yj(m+1) – yi(m+1)| |∞) ) / (N-m-1)    for j ≠ i, 1 ≤ j ≤ N−m           (4) 
Am(r) = ( ∑i Ai

m(r) ) / (N-m)   for 1 ≤  i  ≤  N-m                                                            (5) 
This leads to, 

B(r) = (N-m-1)(N-m)Bm(r) / 2                                                                                       (6) 
A(r) = (N-m-1)(N-m)Am(r) / 2                                                                                       (7) 

B(r) and A(r) respectively represent the total number of template matches in an m-
dimensional and (m+1)-dimensional phase space within a tolerance r. 

The sample entropy is defined as the negative of natural logarithm of the conditional 
probability that a dataset of length N, having repeated itself for m samples within a 
specified tolerance r, will also repeat itself for m+1 samples without allowing self 

matches and is computed as  
SampEn(m, r, N) =  − log(A(r) / B(r))                                                                          (8) 

In this work, m = 2, d = 0.2 and M = 4500 are chosen. 
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2.5 Permutation entropy (PE) 
Permutation entropy (PE) was first introduced by Bandt and Pompe [31] as a 

convenient means of evaluating complexity features for time series based on order 
relation between the values of time series instead of values themselves. PE refers to the 
local order structure of the time series which corresponds to a quantitative complexity 
measure of a dynamical time series. PE approach is a simple, fast, robust and invariant 
method with respect to monotonous nonlinear transformations. Basically PE is a new 
method for ordinal time series analysis. It transforms a given time series into a series of 
ordinal patterns, each describing the order relations between the present and a fixed 
number of equidistant past values at a given time [32]. Let xt (t = 1, 2, ...) represent a 
scalar time series. The embedding procedure produces vectors Xt [xt, xt+τ, ..., xt+mτ] 
where m is  the embedding dimension and τ is the time lag. Then, Xt can be arranged in 
an ascending order and for m different numbers, there will be m! possible order patterns, 
usually called permutations. Bandt and Pompe have proposed a Shannon entropy based 
feature, PE, to quantify and visualize the changes in the time series. If each permutation 
is treated as a symbol, the vectors Xt can be treated as a symbol sequence and the 
distinct number of symbols, J, would be either less than or equal to m!. For the given 
time series xt, the probability distributions of these distinct symbols are designated as p1, 
p2, ..., pJ. The PE for the time series is defined as 

Hp(m) = - ∑j pj ln(pj)        for 1 ≤  j ≤  J                                                                  (9) 
The corresponding normalized PE is defined as 

Hp = Hp(m) / ln(m!)                                                                                              (10) 

The smallest value of Hp is zero and this corresponds to a regular, deterministic time 
series. This will be attained for a monotonously increasing or decreasing time series 
which can be readily predicted. The largest value of Hp is one and this corresponds to a 
random time series with all permutations having equal probability. That is, 0 ≤  Hp  ≤ 1 
and Hp gives a measure of the departure of the time series under study from a complete 
random one. In general, larger the value of Hp, the more irregular the time series is. In 
this study, m = 4 and N = 4500 are selected. 

2.6 Modified energy-entropy feature 
Modified energy-entropy (EE) feature has been used in speech processing and has 

been found to be effective even in high noise environment [34]. This feature is a 
combination of the energy and the spectral entropy [35]-[36]. While energy and entropy 
are commonly used in bio-signal processing, they both have limitations in noisy 
environment. Spectral entropy though is useful in differentiating normal and 
pathological states; it fails in the presence of noise. Energy, on the other hand, performs 
well in noisy environment because of its additive property; energy of the sum of the 
signal and noise is always greater than the energy of noise alone. EE combines the 
advantages of these two features.  EE is effective even in high noise environment [34]. 
The EE feature is computed for every segment of the time series as follows. 

First estimate the energy Ei of the segment i as 

Ei = ∑k (Sk)2      1≤ k ≤ K                                                                                      (11) 

K is the number of samples in the ith segment. 
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Next compute N-point DFT of the ith segment of the time series and estimate the 
probability density function for the frequency component k as 

pi(k) = (|X(k)|) / (∑k |X(k)|)                                                                                    (12) 

The denominator summation is carried out over the range 1≤ k ≤ N. X(k) is the 
magnitude of the kth frequency component, pi is the corresponding probability density 
function and N is the length of DFT. 

Then compute the entropy for the ith segment as 

Hi = ∑k pi(k) log (pi(k))     1≤ k ≤ N                                                                        (13) 

Finally evaluate the modified energy-entropy feature for the ith segment as 

EEFi = (1 + |Ei . Hi|)0.5                                                                                            (14) 

Entropy is a measure of disorder or randomness. The more the randomness is, the 
higher the entropy will be. Larger value of this entropy implies higher complexity and a 
smaller value implies a lower complexity. In this study, K = 4500 and N = 8192 are 
chosen. 

2.7 Statistical analysis and Receiver Operating Characteristic (ROC) plots 

Unpaired significance tests (Student’s t-tests) are used to evaluate the statistical 
differences between the different entropy values of normal and CHF groups. If 
significant differences between the two groups are found, then the potential of the 
nonlinear analysis method to discriminate between ECG series in healthy subjects 
or/and CHF patients is evaluated using receiver operating characteristic (ROC) plots in 
terms of area under ROC (AROC) and the following performance parameters: 
sensitivity, specificity, precision, and accuracy. ROC plots are used to gauge the 
predictive ability of a classifier over a wide range of values [37]. A threshold value is 
applied such that a feature value below this threshold will be assigned one category 
while a feature value above the threshold will be assigned other category. ROC curves 
are obtained by plotting sensitivity values (that represent the proportion of the features 
of category-1 and test positive) along the y axis against the corresponding (1-
specificity) values (which represent the proportion of the correctly identified features of 
the category-2) for all the available cutoff points along the x axis. Accuracy is a related 
parameter that quantifies the total number of features (both categories 1 and 2) precisely 
classified. The AROC measures this discrimination, that is, the ability of the test to 
correctly classify into categories 1 and 2, and is regarded as an index of diagnostic 
accuracy. The optimum threshold is the cut-off point in which the highest accuracy 
(minimal false negative and false positive results) is obtained. This can be determined 
from the ROC curve as the closet value to the left top point (corresponding to 100% 
sensitivity and 100% specificity). AROC is a single number summary of performance, 
the larger the value, the better is the diagnostic test. An AROC value of 0.5 indicates 
that the test results are better than those obtained by chance, where as a value of 1.0 
indicates a perfectly sensitive and specific test. A rough guide to classify the precision 
of a diagnostic test based on AROC is as follows: If the AROC is between 0.9 and 1.0, 
then the results are treated to be excellent; If the AROC is between 0.8 and 0.89, then 
the results are treated to be good; the results are fair for values between 0.7 and 0.79; 
the results are poor for values between 0.6 and 0.69; If the AROC is between 0.5 and 
0.59, then the outcome is treated to be bad. 
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3. Results and Discussion 

 

Figure 1. Values of EE, ApEn, PE, and SampEn for increasing window length, N. 
 

The effect of data length, N, on the different entropies is first examined by varying N 
from 1000 to 4500 samples. All the four complexity and irregularity measures were 
estimated for normal and CHF subjects. The results were averaged based on N sample-
epochs within each ECG recording of normal and CHF groups. A comparison of the 
results of entropies in normal and CHF groups for different data lengths is depicted in 
Figure 1. It is found that ApEn and SampEn can separate well the groups only for N > 
3000 samples. However, EE and PE are able to separate normal and CHF groups even 
for shorter data lengths. In this study it is found that N = 4500 samples leads to a 
reasonably good discrimination in all the cases. The ApEn, Sampn, PE, and EE values 
(mean ± SD) for the normal subjects and CHF patients and the corresponding p values 
of the unpaired Student’s t-tests performed to examine the difference between the two 
groups are summarized in Table 1. As can be seen, corresponding to ApEn values not 
much significant differences are found between the two groups (0.01 < p < 0.05). It is 
found that, however, corresponding to SampEn, PE, and EE, significant differences 
between the two groups are in ascending order (all p < 0.01). 
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Table 1. Descriptive results of entropy analysis of raw ECG time series for Normal and CHF groups 
for N=4500. All values are expressed as mean ± SD.  (non-paired Student’s t-test; p < 0.01) 

Entropy measure Normal CHF p-value; 
tstat 

ApEn 0.2004±0.035 0.256±0.0382 p = 0.0267; 
tstat= 2.22 

SampEn 0.1125±0.028 0.159±0.0280 p = 0.0058; 
tstat= 2.77 

PE 0.7654±0.009 0.8847±0.0172 p = 0; 
tstat = 25.68 

EE 22.59±3.3770 81.08±7.366 p = 0; 
tstat = 49.47 

 
 
 

 
Figure 2. ROC plots to discriminate normal and CHF subjects using EE, ApEn, SampEn, and PE 

measures. 
 

The new entropy method, EE, allows us to evaluate the information richness in the 
surface ECG time series as a combination of energy and spectral entropy. It is found 
that EE can effectively discriminate patients with CHF from normal subjects. 
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Table 2. Descriptive results of ROC analysis using ApEn, SampEn, PE, and EE for discriminating 

Normal and CHF groups for N=4500. 
Complexity 
measure 

AUC Average 
sensitivity% 

Average 
specificity% 

Average 
precision% 

Average 
accuracy% 

ApEn 0.6900 66.7 64.9 6.7 65.0 
SampEn 0.7189 81.8 58.3 7.0 59.2 
PE 0.9075 90.9 96.0 46.2 95.8 
EE 0.9999 100.0 99.0 97.1 99.9 
 

4. Conclusion 

The chief findings of this study are: (1) all the entropy measures of the surface ECG 
time series are increased in CHF subjects compared to normal subjects. This implies 
normal subjects show a large amount of similar epochs in addition to a considerable 
amount of non-similar epochs in their ECG time series. CHF patients lack similar 
epochs observed in normal subjects. (2) Among the four entropy measures EE 
demonstrated the best discrimination between normal and CHF subjects. (3) The study 
indicates the feasibility of using surface ECGs, instead of beat-to-beat intervals, to 
effectively separate pathological condition of CHF patients from normal subjects.  
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