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Abstract 
Dynamic economic load dispatch is one of the most important roles of power 

generation’s operation and control. It determines the optimal controls of production 
of generator units with predicted load demand over a certain period of time. 
Economic dispatch a
subjects in the power network’s operation, which is a complicated nonlinear 
constrained optimization problem. Since dynamic economic load dispatch was 
introduced, several intelligent methods have been 
paper, an Improved Particle Swarm Optimizer (IPSO) and Water Cycle optimizer 
(WCO), as swarm-based optimization algorithms, have been proposed to solve 
dynamic economic load dispatch problem and their results compare wit
These algorithms are applied to a dynamic economic dispatch problem for 
power systems with a 
the research is categorized in two parts; first of all, introduction of applicat
new heuristic method for solving economic load dispatch problem and second, 
comparison between two swarm
is very fast and also reach to better results and minimum.
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1. Introduction 

Dynamic economic load dispatch is an extension of static economic load dispatch to 
determine the generation schedule of the committed units so as to meet the predicted 
load demand over a time horizon at minimum operating cost under valve point, ramp 
rate, multi fuel and other constraints. The dynamic economic load dispatch is a method 
to schedule the online generator outputs with the predicted load demands over a certain 
period of time, so as to operate an electric power system most economically. It is a 
dynamic optimization problem taking into account the constraints imposed on system 
operation by generator ramping rate limits. The dynamic economic load dispatch is not 
only the most accurate formulation of the economic dispatch problem but also the most 
difficult to solve because of its large dimensionality. Normally, it is solved by dividing 
the entire dispatch period into a number of small time intervals, and then a static 
economic dispatch has been employed to solve the problem in each interval. Since 
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Dynamic economic load dispatch is one of the most important roles of power 
generation’s operation and control. It determines the optimal controls of production 
of generator units with predicted load demand over a certain period of time. 
Economic dispatch at minimum production cost is one of the most important 
subjects in the power network’s operation, which is a complicated nonlinear 
constrained optimization problem. Since dynamic economic load dispatch was 
introduced, several intelligent methods have been used to solve this problem. In this 
paper, an Improved Particle Swarm Optimizer (IPSO) and Water Cycle optimizer 

based optimization algorithms, have been proposed to solve 
dynamic economic load dispatch problem and their results compare with each other. 
These algorithms are applied to a dynamic economic dispatch problem for 
power systems with a 24-h load demand at each one hour time intervals. The goal of 
the research is categorized in two parts; first of all, introduction of applicat
new heuristic method for solving economic load dispatch problem and second, 
comparison between two swarm-based algorithms. Obtained results show that WCO 
is very fast and also reach to better results and minimum. 

Dynamic Economic Load Dispatch, Improved Particle Swarm Algorithm, Power Loss, 
Water Cycle Algorithm. 

Dynamic economic load dispatch is an extension of static economic load dispatch to 
determine the generation schedule of the committed units so as to meet the predicted 
load demand over a time horizon at minimum operating cost under valve point, ramp 

multi fuel and other constraints. The dynamic economic load dispatch is a method 
to schedule the online generator outputs with the predicted load demands over a certain 
period of time, so as to operate an electric power system most economically. It is a 

namic optimization problem taking into account the constraints imposed on system 
operation by generator ramping rate limits. The dynamic economic load dispatch is not 
only the most accurate formulation of the economic dispatch problem but also the most 

ficult to solve because of its large dimensionality. Normally, it is solved by dividing 
the entire dispatch period into a number of small time intervals, and then a static 
economic dispatch has been employed to solve the problem in each interval. Since 
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Dynamic economic load dispatch is one of the most important roles of power 
generation’s operation and control. It determines the optimal controls of production 
of generator units with predicted load demand over a certain period of time. 
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constrained optimization problem. Since dynamic economic load dispatch was 
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Dynamic economic load dispatch is an extension of static economic load dispatch to 
determine the generation schedule of the committed units so as to meet the predicted 
load demand over a time horizon at minimum operating cost under valve point, ramp 

multi fuel and other constraints. The dynamic economic load dispatch is a method 
to schedule the online generator outputs with the predicted load demands over a certain 
period of time, so as to operate an electric power system most economically. It is a 

namic optimization problem taking into account the constraints imposed on system 
operation by generator ramping rate limits. The dynamic economic load dispatch is not 
only the most accurate formulation of the economic dispatch problem but also the most 

ficult to solve because of its large dimensionality. Normally, it is solved by dividing 
the entire dispatch period into a number of small time intervals, and then a static 
economic dispatch has been employed to solve the problem in each interval. Since 
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dynamic economic load dispatch was introduced, several methods have been used to 
solve this problem. However, all of those methods may not be able to provide an 
optimum solution and usually getting stuck at local optima [1-3]. Depending on the 
complexity of the problem, different objective functions are defined as ‘cost functions’. 
Some of these functions are modeled as linear functions and more complex ones are 
modeled as non-linear functions. Solutions with lower operation cost are more willing 
to reach the optimized operation point. So, engineers always attempt to decrease the 
operation cost with different mathematical techniques. 

Many mathematical methods have been developed to solve the dynamic economic 
load dispatch problem in the past decades. The major methods include LP [4], NLP [5], 
LRA [6] and QP [7]. These methods were facing problems to give optimal solution due 
to the non-linear and non-convex characteristics of generating units. It would generate 
large errors to use LP to linearize the dynamic economic load dispatch model; also, for 
QP and NLP; the objective function should be continuous and differentiable. The LR 
algorithm leads to the solution oscillation. Dynamic programming is a method that can 
solve the dynamic economic load dispatch problem without imposing any restrictions 
on the nature of the cost curves. However, this method suffers from the dimensionality, 
leading to high computational cost. 

Modern heuristics stochastic optimization techniques such as PSO [8, 9], TS [10], 
GA [11, 12], SA [13], HNN [14, 15], and EP [16, 17] appear to be efficient in solving 
dynamic economic load dispatch problem without any restriction on the shape of cost 
curves due to their ability to seek the optimal solution. In addition, as a very new 
research, a new algorithm called Brent Method was proposed to solve a problem 
dynamically in [18]. Also in [19, 20], conventional economic load dispatch with 
considering valve-point effect was solved with GSA.  

The most important issue with evolutionary techniques is to maintain a proper 
balance between exploration i.e. global search and exploitation i.e. local search. The 
performance of evolutionary methods heavily depends on the settings of the tuning 
parameters; therefore finding optimal parameter setting is a very big challenge. 
Evolutionary methods also have a tendency to converge very fast to a solution that is 
quite close to the global minimum. This tendency causes premature convergence. 

 In this paper, new methods based on swarm intelligence are used for dynamic 
economic load dispatch. In this method, a new version of PSO and also WCO are 
presented. To combine these algorithms with economic load dispatch problem, number 
of generation units is considered as problem dimension. In different iteration, power 
outputs of generation units are calculated with respect to system constraints. One unit is 
selected randomly as a "slag generator" to compensate the difference between load 
demand and total power generation. The effectiveness of the presented method is 
demonstrated for a 6-unit test system. Also, simulation results have been compared with 
reported results in literatures and demonstrate that solving dynamic economic load 
dispatch problem with WCO and IPSO lead to very accurate and better results. 

The paper is organized as follow: sections 2 emphasize on the dynamic economic load 
dispatch problem formulation with various constraints.Section 3, gives a brief description about 
the IPSO algorithm. Also, in section 4, a brief description about the WCO algorithm was 
presented. Section 5, presents the implementation of swarm-basedalgorithms for dynamic 
economic load dispatch problem and also, simulation results for test case are compared with the 
other reported methods. 
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2. Dynamic Economic Load Dispatch Problem Formulation 

Dynamic economic load dispatch is an important topic in power system operation 
and many papers published in literature about the problem. In each sub-time interval, 
total power generation is adjusted to supply the required demand in a minimum 
operation cost, which optimizes the production of the costly fossil generation units. 

A simple dynamic economic load dispatch problem consists of some continuous 
functions which can be solved by mathematical techniques. Dynamic economic load 
dispatch problem includes physical and operational constraints that are described as 
equality and inequality constraints. Several of these constraints have been introduced as 
follow [1-5]: 

Equality constraints (without loss): 

∑
=

=
n

i
tDti PP

1
,,                                                               (1) 

Inequality constraints: 
maxmin

iii PPP ≤≤                                                        (2) 

 
Where Pi,t is the output power of ith generator in the tth time interval in MW, PD,t is the 

total power demand in the tth time interval in MW, Pi
min is the lower bound and Pi

max is 
the upper bound of the  generation of the ith unit in MW and also, n is the total number 
of power units. 

In more complex problems, transmission loss (PL) is added to (1). The PL is calculated 
as follow: 
 

n n n

L i ij j 0i i 00
i = 1 j = 1 i =1

P = P B P + B P + B∑∑ ∑      (3) 

 
Calculations of B-coefficients are described in [2-7]. Therefore, with substituting (3) 

in (1), (4) is deduced: 

1

n

i D L
i

P = P + P
=

∑                                                        (4) 

 
Fuel cost of each generator is defined as: 
 

2
i i i i i i iF (P ) = a P + b P + c               (5) 

 
Where Fi is the fuel cost and a i, bi and ci are cost coefficients of ith generator. 
All of the aforementioned cost functions are continuous functions and can be solved 

by conventional mathematical techniques. More accurate models include ramp-rate 
constraints which are modeled as [1-5]: 

a) As generation increases: 
iii URPP ≤− 0                                                            (6) 

b) As generation decreases: 
iii DRPP ≤−0                                                          (7) 
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So, equation (2) can be corrected as: 
 

),min(),( 0
,
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0
,

min
itiitiitii URPPPDRPPMax +≤≤−  (8) 

 
 

Where URi and DRi are up- ramp rate and down-ramp rate limits of the ith generator, 
respectively. 

Finally, minimizing cost function is the purpose of solving ELD problems: 
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3. Concept of IPSO 

Kennedy and Eberhart suggested a PSO based on the analogy of swarm of bird and 
school of fish. In PSO, each individual makes its decision based on its own experience 
together with other individual’s experiences [21]. The individual particles are drawn 
stochastically towards the position of present velocity of each individual, their own 
previous best performance, and the best previous performance of their neighbors. It was 
developed through simulation of a simplified social system, and has been found to be 
robust in solving continuous non-linear optimization problems [22]. The main 
advantages of the PSO algorithm are summarized as: simple concept, easy 
implementation, and computational efficiency when compared with mathematical 
algorithm and other heuristic optimization techniques [23-25]. 

The PSO follows the special scenario: suppose that a group of birds are randomly 
searching food in a big area. Suddenly one of them finds a piece of food. Other birds 
don’t know where the food is, but they know which finds the food and how far from it. 
So, the best strategy is to follow the bird which is nearest to the food [21]. Using this 
scenario, PSO can be used to solve optimization problems. In PSO, each single solution 
is a ‘‘bird’’ in the search space. Here, it is called as ‘‘particle’’. For all of the particles 
fitness value has been calculated, which are evaluated by the fitness function to be 
optimized, and have velocities, which direct the flying of the particles. The particles are 
‘‘flown’’ through the problem space by following the current optimum particles. The 
PSO is initialized with a group of random particles (solutions) and then searches for 
optima by updating generations. In each iteration, each particle is updated by following 
two ‘‘best’’ values. The first one is the best solution (fitness) it has achieved so far; and 
he fitness value is also stored. This value is called "Pbest". Another ‘‘best’’ value that is 
tracked by the PSO is the best value, obtained so far by any particle in the population 
which is a global best that is called "Gbest" [21-23]. After finding the two best values, 
the particle updates its velocity and positions based on following equations: 

 
Vt+1 = W × Vt +  C1 ×  r×(Ppb – Xcs ) +  C2 ×r×(Pgb – Xcs ) (10) 

 
Xt+1 =  Xt +  Vt+1         (11) 

 
The main PSO categorized into two major topologies: global and local search PSO. 

Several tests show that global version has a worse search space coverage than the local 
PSO, also in global version particles’ movement are more concentrated around one 

1, 2, ... 1, 2, ...i to n t T= =
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solution and therefore can more quickly find the best solution. A little problem may 
occur for global version is very susceptible to local minima. In general, global version is 
the better choice when solution space is not very scattered, because of its speed and 
accuracy [26, 27]. 

Fig.1 shows the concept of the searching mechanism of PSO using the modified 
velocity and position of each individual by (10) and (11). 

 

 
Figure 1. The search mechanism of the PSO 

 
 

Following code shows global PSO algorithm’s pseudo code: 
 

For each particle 
Initialize particle 

End 
Do  

For each particle 
               Evaluate objective function and calculate fitness value 

If the fitness value is better than the best fitness value Pbest in history 
Set current value as the new Pbest 

End  
Choose the particle with the best fitness value of all the particles as the Gbest 

For each particle 
                  Update particle’s velocity 
                 Update Particle’s position 

End 
While maximum iteration or minimum error criteria is not attained 
 

Inertia weight is the other factor that its changes can make new version of PSO. In 
this case, amount of momentum that a particle carries between iteration can be 
controlled by a parameter w that multiplied by the particle’s current velocity, as it can 
be seen in equation (10). Indeed, this control parameter influences the particle’s area of 
exploration. So, the amount of this parameter can play an important role in searching 
process. Using a high constant value of inertia weight (e.g. more than unit) although can 
cover more area, but often PSO trap in local minima and can’t find best solution. In the 
other hand, a lower value of this parameter will lead to particles concentrating on small 
search space and PSO losses the other possible solution spaces. One idea is using an 
equation for inertia weight that depends on the number of pass iterations so that 
decreases during search process. Using high value of inertia weight in initialization step 
can help PSO to search all area of the solution space, by spending time and increase of 
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the number of iteration, inertia weight decreases; this can help PSO to present good 
local search at the final iterations [21-27]. 

The formula for inertia weight can be exponential format, as shown in equation (12). 
Using this equation, PSO starts by a given value and decreases exponentially to near 
zero. 

T
t

ewW
α−

= max                                                         (12) 
 

Where, wmax is the maximum values of inertia weight. The coefficient α is a positive 
constant that amount of it can control ramp of variations. 

In this paper, an improved version of PSO is utilized. This version uses constant 
value for inertia weight but this constant is calculated based on equation (13). It is not a 
simple equation, while it is obtained by analytical and algebraic analysis that uses 
constriction property. Constriction coefficients can prevent explosion; further, these 
coefficients can induce particles to converge on local optima [26, 27]. In addition in this 
IPSO, equation (10) has a significant change that can be seen equation (13): 
 







 >
−+−

=

k else

 for 4
42

2
2

ϕ
ϕϕϕ

κ
χ

                               (13) 

 
 

Vt+1 = χ × (Vt + φ1×(Ppb – Xcs ) + φ2×(Pgb – Xcs ))                   (14) 
 
 

Where, coefficient χ is constriction coefficient which is used as inertia weight. 
Coefficients φ1 and φ2 are random numbers uniformly distributed in the range (0, φ/2). 
Set k=1, meaning that the space thoroughly searched before the swarm collapses into a 
point [26, 27]. 

4. Concept of WCO 

This novel heuristic algorithm introduced at 2012, is taken from the behavior of 
water cycling in nature. Water moves downhill in the streams and rivers, starting from 
up in the mountains and ending up in the sea. Streams and rivers collect water from the 
rain and other streams on their way. The rivers and lakes are evaporated when plants 
give off water as transpire process. Then, by carrying the water in the atmosphere, 
clouds will be generated. These clouds condense in the colder atmosphere and release 
the water back in the rain form, creating new streams and rivers. Fig. 2 shows the 
schematic procedure of the WCO [28]. 
Like other swarm-based algorithms, this method begins with an initial population called 
raindrops caused by rain or precipitation. The best raindrop is chosen as sea, a number 
of better raindrops as rivers and the rest, are considered as streams flowing to rivers or 
directly to the sea. In Water Cycle Algorithm (WCA), each array is considering popN
individuals; the raindrops matrix is as follows: 
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Figure 2. The Schematic of the WCO 

 
 

Population of raindrops = 

1 1 1 1
1 2 3 var
2 2 2 2
1 2 3 var
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χ χ χ χ

χ χ χ χ

 
 
 
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 

L

L

M M M M M

L

(15) 

 
Where popN is the number of raindrops and varN defines number of variables. In a 
randomly generated matrix of raindrops with the size of varpopN N× , Each of the 
decision variable values ( )1 2 3, , ,..., Nχ χ χ χ  can be represented as real values or as a 
predefined set for continuous and discrete problems, respectively. The fitness or cost of 
each row is obtained using the Cost function ( )C  given as: 
 

1 2 var( , ,..., )i i i
i i NC Cost f x x x= = (16) 

1, 2,3,..., popi N=
 

 
    After generating popN  raindrops, a number of srN among the best of them are chosen 
as rivers and sea. The raindrop which has the best function value is considered as sea. 
The rest, are considered as streams that may flow to the rivers or directly to the sea [28, 
29]: 

{Number of Rivers   1  sr
Sea

N = + (17) 

Streams pop srN N N= − (18) 

 
Depending on the intensity of the flow, Streams are assigned to the rivers and sea, 

which is calculated with the equation below: 

1

r

n
n StreamsNS

i
i

CostNS round N
Cost

=

 
  = × 
 
  

∑
(19) 
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     Where, nNS  is the number of streams which flow to a specific river or sea. 
     The movement of a stream’s flow toward a specific river is applied along the 
connecting line between them by using a randomly chosen distance as ( )0,X C d∈ × . 
Where, C is a user-defined value between 1 and 2; and d is the current distance between 
stream and river. The value X is a number between 0 and C d× with any distribution. If 
the value of C  be greater than 1, the streams gain ability to flow in different directions 
toward the rivers. So, the best value for C  may be chosen as 2. This concept can be 
used in flowing rivers to the sea. Therefore, new position for streams and rivers can be 
calculated using [28-30]: 
 

( )1i i i i
Stream Stream River StreamX X rand C X X+ = + × × − (20) 

 
( )1i i i i

River River Sea RiverX X rand C X X+ = + × × − (21) 

 
Where rand is a uniformly distributed random number between [0,1]. If any streams 

solution value is better than its connecting river, their position is changed. Also, the 
position of sea and a river is changed if the river has a better solution than the sea. 

The evaporation process has an important role in the WCA, preventing the algorithm 
from trapped in local optima and rapid convergence. The following clause represents 
the determination of whether or not the evaporation and raining process happens. 
 

if max
i i
Sea River dχ χ− < 1,2,3,... 1sri N= −  (22) 

 
    Where, maxd is a small number close to zero and controls the search depth, near the 
sea. When a large value of maxd  is selected, the search intensity is being reduced but its 
small value encourages it. When the distance between the river and sea is less than maxd  
the river has joined the sea. So, the evaporation process is applied and then the raining 
process will happen. The value of d decreases at the end of each iteration with equation 
below [28, 29]: 

1 max
max max max iteration

i
i i dd d+ = − (23) 

 
The new randomly generated raindrops form new streams in different locations. 

Again the raindrop with the best function value among other new raindrops is 
considered as a river flowing to the sea. The rest of them are considered as new streams 
which flow to the river or go directly to the sea. For the streams that directly flow to the 
sea a specific equation which increases the exploration near sea is used, result in 
improvements in the convergence rate and computational performance of the algorithm 
for constrained problems [28-30]. 

 

var(1, )new
stream sea U randn Nχ χ= + × (24) 
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     Where U defines the concept of variance. In fact the value of  U  shows the range 
of searching region near the sea and randn is a normally distributed random number. 
The most suitable value found for U  is 0.1, while the higher values increases the 
possibility of quitting from feasible region and the lower values reduce the searching 
space and exploration near the sea. 

5. Simulation Results and Discussion 

In this paper, two swarm-based heuristic optimization algorithms have been utilized 
to minimize total fuel cost of generation units. Their implementation for dynamic 
economic load dispatch problem includes following steps: 

 
Step (1): 

Initialize Step: Initialize number of populations, Dimension of search space (number 
of generators), and total required demand in each time interval (PD,t).  

In this step, total required demand (PD) and transmission loss (PL) should be 
considered, as total generation output (PD+PL) should be satisfied. 

 

LD

n

j
ji PPm +=∑

=1
                                                    (25) 

 
 

Step (2): 
Determination of generator limits and cost function coefficients: Generation units 

have some limits in producing power. So, these limits should be considered in dynamic 
economic load dispatch problems. Following equation indicates generation limits of ith 
unit with respect to its ramp-rate constraints: 

 
),min(),max( 0

,
max

,
0
,

min
itiitiitii URmmmDRmm +≤≤−  (26) 

 
 

Step (3): 
Random Generation of initial population: To start algorithms, population should be 

initialized within their feasible regions. In this paper, feasible region is defined between 
minimum and maximum power output of each generator. 

 
 

Step (4): 
Cost calculation for each agent: Here, generation cost of each unit is calculated using 

the proposed algorithm. Also, problem constraints are satisfied in the following manner: 
 

);,max(

),,max(
0
,
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,

0
,
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,
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                  (27) 

     And: 
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                    (28) 

 
 

Step (5): 
Updating algorithms parameters: Position and velocity should be updated for both 

algorithms. 
 
 

Step (6): 
Checking stop criteria: Stop criteria should be checked in this step. 
 

 
Step (7): 

Updating power output of each generator: After calculation of minimum cost, power 
output of each unit should be recomputed and defined as an initial value for the next 
time interval. 

 
 

Step (8): 
Implementing algorithms for all time intervals: If economic load dispatch is employed 

for each time interval, results (outputs) should be a scheduled program for generating 
power in a power system. 

 
In this section, WCO and IPSO have been applied to solve dynamic economic load 

dispatchproblem in a 6-unit test case and the results obtained by them have been 
compared with other methods' results reported in literatures. 

Cost coefficients and boundary limits of generation units are shown in Table 1. 
Ramp-rate limit constraints and initial power generated by each unit is shown in Table 
2. Obviously, initial values for other time-interval are the values of the previous 
interval. Also, Table 3 shows the demand power for a 24-h time horizon at each 1-h 
time intervals. 

Loss coefficients matrices that are related to equation (3) are shown below for 
WCO: 

3

1.7 1.2 0.7 0.1 0.5 2.0
1.2 1.4 0.9 0.1 0.6 0.1
0.7 0.9 3.1 0.0 1.0 0.6

10
0.1 0.1 0.0 0.24 0.6 0.8
0.5 0.6 0.1 0.6 12.9 0.2
2.0 1.0 0.6 0.8 0.2 15.0

ijB −

− − − 
 − − 
 − −

=  − − − 
 − − − − −
 
− − − − − 

                     (29) 

 
[ ]310 0.3908 0.1297 0.7047 0.0591 0.2161 0.6635oiB −= − − −            (30) 

0.056ooB =                                                        (31) 
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Table 1. Generator Data and Cost Coefficients of a 6-Unit System 

Unit Minimum Power 
(Mw) 

Maximum Power 
(Mw) a ($/Mw) b ($/Mw) c ($/Mw) 

1 100 500 0.007 7 240 

2 50 200 0.00095 10 200 

3 80 300 0.009 8.5 220 

4 50 150 0.009 11 200 

5 50 200 0.008 10.5 220 

6 50 120 0.0075 12 190 

 
Table 2. Ramp Rate Limits of the Studied 6-Unit System 

Unit Initial  power generated(Mw) Up-Ramp Rate (Mw/h) Down-Ramp Rate (Mw/h) 

1 340 80 120 

2 134 50 90 

3 240 65 100 

4 90 50 90 

5 110 50 90 

6 52 50 90 

 
Table 3. Demand Data with 24-h Time Horizon for the Studied 6-Unit System 

Hour Demand (Mw) Hour Demand (Mw) 

1 955 13 1190 

2 942 14 1251 

3 935 15 1263 

4 930 16 1250 

5 935 17 1221 

6 963 18 1202 

7 989 19 1159 

8 1023 20 1092 

9 1126 21 1023 

10 1150 22 984 

11 1201 23 975 

12 1235 24 960 
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Simulation results for a test case have been compared with other method’s results in 

Table 4. The goal of the research is categorized in two parts; first of all, introduction of 
application of new heuristic method for solving economic load dispatch problem and 
second, comparison between two swarm-based algorithms. Comparative studies show 
that for a dynamic economic load dispatchproblem, WCO is faster and more accurate in 
reaching good solutions and can perform better than other methods. 

 
 

Table 4. IPSO and WCO Results for dynamic economic load dispatch problem for a 6-Unit Test System 

Applied Method Minimum Cost ($/h) 

Lambda Iterative Method 313405.648 

Brent Method 313405.403 

IPSO 313401.426 

WCO 313399.721 

 

6. Conclusion 

Dynamic economic load dispatch is a problem to schedule the online generator 
outputs with the predicted load demands over a certain period of time, to operate an 
electric power system most economically. It is a dynamic optimization problem taking 
into account the constraints imposed on system operation by generator ramping rate 
limits. The dynamic economic load dispatch is not only the most accurate formulation 
of the economic dispatch problem but also the most difficult to solve because of its 
large dimensionality. This paper presents application of two swarm-based heuristic 
algorithms which are called WCO and IPSO and then, applied them for solving 
dynamic economic load dispatch problem. To show the efficacy of WCO in solving 
dynamic economic load dispatch problem, it is tested a 6-unit power systems. In 
comparison to other method’s results, WCO has the ability to solve the optimization 
problem in a shorter time. 
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