
 

  
 
 

81 

  

Journal of Advances in Computer Research 
Quarterly pISSN: 2345-606x   eISSN: 2345-6078 
Sari Branch, Islamic Azad University, Sari, I.R.Iran  
(Vol. 6, No. 4, November  2015), Pages: 81-106 
www.jacr.iausari.ac.ir  

Finite Time Adaptive Optimal Integral Sliding Mode 
Control for a Class of Uncertain Second Order 

Nonlinear Systems with Input Nonlinearity 
 

Alireza Modirrousta*, Hadi Delavari 
 Department of Electrical Engineering, Hamedan University of Technology, Hamedan ,Iran  

alirezamodirrousta@stu.hut.ac.ir; delavari@hut.ac.ir  
 

Received: 2015/02/23; Accepted: 2015/05/17 
 

 

Abstract 
In this paper, a new robust controller based on geometric homogeneity and 

adaptive integral sliding mode is proposed for a class of second order systems. The 
upper bound of the system disturbances is not required. Fully unknown parameters 
have been considered in the described model and its finite–time convergence to zero 
equilibrium point is proved. Moreover, the controller is developed in the presence of 
control singularity and unknown non-symmetric input saturation. The finite time 
stability of the proposed controller has been proved via classical Lyapunov criteria. 
In order to tune the control parameters, all the positive constant gains are optimized 
by ant colony optimization algorithm during the offline input-output training data. 
Two polar robots are introduced to show the performance of the designed 
controller. The robustness and error accuracy are proved in simulation results. 
Moreover, the effects of input nonlinearity such as input saturation have been 
considered in the simulation.  

 
Keywords:Adaptive control, Integral sliding mode control, Input saturation, Ant colony optimization  

 

 

1. Introduction 

Sliding mode control (SMC) is known to be an efficient and powerful control 
technique applicable to a wide class of nonlinear systems. The SMC methods have 
brought many advantages, such as insensitivity to model uncertainty, external 
disturbances and unknown parameters and it also shows the fast response. The control 
design of uncertain systems is still challenge and it has drawn serious attention from the 
research community. Among the existing control techniques [1-2] variable structure 
control [3] and sliding mode control are powerful control schemes against perturbation. 
The first step in the sliding mode control design is to choose a suitable manifold such 
which the state variables restrict to the manifold with a desired dynamic and converge to 
their equilibrium. By using SMC, the states of the system are forced to move along the 
chosen manifold in the state space, called the sliding surface. The next step is to 
defining an input signal to ensure that the error system trajectories will reach to the 
sliding surface and stay on it forever. After reaching the sliding manifold, the system 
becomes totally insensitive to parametric uncertainties and external disturbances. 

However, conventional switching manifolds are usually linear hyperplanes which 
guaranty the asymptotic stability of dynamic errors; but, dynamic error cannot converge 
to zero in finite time. The sliding mode parameters can be adjusted to get faster error 
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convergence, however, this will increase the control gain, which may cause much more 
chattering on the sliding surface and it deteriorates the system performance. Different 
from the traditional control strategies where the tracking errors are required to converge 
in an asymptotic way, the terminal sliding mode (TSM) control achieves finite-time 
convergence of the tracking errors [4-5]. With this ability, the closed loop system can be 
accurately and efficiently controlled to the given command. Accordingly, many 
application examples of TSMC have been considered to provide fast and finite time 
control performance as well as high precision [6-8]. In [9], the fast terminal dynamics 
was proposed and used in the design of the sliding-mode control for SISO nonlinear 
dynamical systems. The authors of [10] proposed nonsingular terminal sliding mode 
called NTSMC to solve nonsingular problem. Many other researchers have worked on 
finite time sliding mode control [10-11]. A geometric homogeneity based finite time 
controller is designed for a chain of integrator system in [12-13]. A higher order sliding 
mode control based on geometric homogeneity is also developed in [14]. Adaptive 
integral high order sliding mode control considering uncertainty based on a geometric 
homogeneity feedback is proposed in [15]. Moreover, fractional order controller is 
designed for flexible robots in [16]. Fractional order sliding mode is also presented in 
[17] for nonlinear systems. 
        Adaptive sliding mode control strategy strengthens the control system’s robustness 
against modeling uncertainties and external disturbances and decreasing signal control 
amplitude. Adaptive laws can provide suitable estimates for the uncertainties and 
unknown parameters. In order to provide finite time adaptive sliding mode, Plestan [18] 
have improved the adaptive sliding mode control. Furthermore, twisting algorithm and 
sliding mode are used to observer non measurable information for nonlinear systems 
[19]. 
       The control input saturation is one of the most important nonlinearities which 
should be explicitly considered in the control design. Analysis and design of control 
systems with input saturation have been studied in [20-23]. Globally stable adaptive 
control was presented for minimum phase SISO plants with input saturation [24]. 
Moreover, sliding control scheme has been presented in the presence of input saturation 
[25]. Thus, the robust tracking control needs to be further developed for the uncertain 
nonlinear system with control singularity case and unknown non-symmetric input 
saturation. In this paper, the proposed sliding mode control will be considered with 
control singularity and unknown non-symmetric input saturation. 
     ACO algorithm has been described in [26]. The main idea of ACO is to model a 
problem as the search for a minimum cost path in a graph. Artificial ants as if walk on 
this graph, looking for cheaper paths. Each ant has a rather simple behavior capable of 
finding relatively costlier paths. Cheaper paths are found as the emergent result of the 
global cooperation among ants in the colony. In this paper, ACO will be used to train 
the controller gains for an optimum solution according to their cost function. Therefore, 
after each search, the gains are updated in appropriate range and finally among all the 
found solutions, the best one will be chosen to be used in this controller.  
      In this paper, an integral Non-singular Terminal ASMC (OITASMC) has been 
designed for second order systems.  In this method, adaptive laws are used to estimate 
the unknown parameters and higher bounds of disturbances. Moreover, optimal learning 
will be used to search an optimal solution for constant gains of the controller. The main 
contribution of this work is to redesign a SMC controller that is robust against unknown 
parameters and other perturbations of second order systems. Integral state will be 
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considered as system states in the sliding surface design. In order to achieve a free 
steady state error and accurate tracking response in a finite time, it is designed based on 
geometric homogeneity. The singularity of unknown non-symmetric input saturation 
will be considered in the controller design. Moreover, ACO algorithm will be applied 
for the offline optimization. The main advantages of this work are as follows: 

• Zero steady-state errors will be acquired according to using integral action in 
non-singular terminal sliding mode design. 

• Finite time robust tracking and stabilization will be guaranteed through the 
Lyapunov criteria. 

• Optimal solution will be found to minimize the quadratic cost function.   
 
The organization of this paper is as follows: the next section details some preliminary 
lemmas and assumptions with the problem formulation. The proposed control strategy 
is described in the third section. The control input is developed considering control 
singularity and input saturation in this section. This section concerns offline ant colony 
optimization for best possible gain selection. Case study is introduced in forth section. 
Simulation results are brought and discussed in the 5th section. Finally, the major 
conclusions of the work are drawn. 
 

2. Preliminary lemmas and problem formulation 
In this section, the system description and tracking problem are explained and some 

necessary lemmas are introduced. Let the nonlinear second order system with 
parametric uncertainties and environmental disturbances as follows: 
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where [ ]Tn txtxtxtx )(),...,(),()( 221=  is the state vector for ,...2,1=n and Rt ∈ . It is 

assumed that 0)( ≠xgk and 0)(1 ≠− xgk  for the first controller design. )(tdk  is an 
external time-varying disturbance and )(xfk∆  is a bounded unknown uncertainty based 
on assumption which will be proposed later in this section. It is clear that lots of systems 
could be represented by Eq. (1) and it usually can be considered as mechanical systems 
like robot manipulators. Moreover, many chaotic systems are known with the same 
dynamic as Eq. (1) [27]. 
 
Lemma1. [28] For ℜ∈ix , ni ,...,2,1= , 10 ≤< p  is a real number, then the following 
inequality holds: 
                                 ( ) p

n
ppp

n xxxxxx +++≤+++ LL 2121                                (2)  
Lemma2. [12] Assume that a continuous, positive definite function )(tV  satisfies the 
following differential inequality: 

0)()()( 00 ≥≤∀−≤ tVtttcVtV ς&                                                                    (3) 
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where 0>c , 10 << ς  are two constants. Then, for any given 0t , )(tV  satisfies the 
following inequality: 

( )( ) 1000
11 ,1)()( tttttctVtV <≤−−−≤ −− ςςς                                           (4)  

and 0)( ≡tV ,  1tt ≥∀  with 1t  given by 
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Lemma 3. [29] Let 0,...,, 21 >nkkk  be such that the polynomial 
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There exists ( )1,0∈ε

 
such that, for every ( )1,1 εβ −∈ , the origin is a globally finite-

time-stable equilibrium for the system (6 ) under the feedback 
                   )()( 111 nnn xsignxkxsignxku αα −−−= L                                                    (7) 

where nαα ,...,1  satisfy
ii
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 , ni ,...,2= , with 11 =+nα  and βα =n . 

 
Assumption1. The environmental disturbance )(tdk  and uncertainty term )(xfk∆   are 
assumed to be bounded with the following inequality 
                                                  21 )(,)( ρρ ≤≤∆ tdxf                                                   (8) 
                                                   kkk Wtdxf ≤+∆ )()(                                                     (9) 
where kW  is a given positive constant for any real number k . 
 
Assumption2. The reference signal ℜ∈)(tr , and its n  order time derivatives )(tr n are 
bounded and piecewise continuous signals. 
 
Assumption3. Ii is assumed that uncertainties of the system are bounded and they are 
also governed by a nonnegative smooth function with an unknown constant. There exists 
the term  

α)(xF  
where α  is a known positive constant, and )(xF  is the nm× matrix whose elements are 
continuous nonlinear functions, [ ]Tkαααα ,...,, 2=  is the 1×m  unknown parameter 
vector of the system, and   is the number of uncertainties. The thk  row of the matrix 

)(xF i s 
         α)(xF .                                                          (10)  

 
Assumption4. The unknown vector parameters  are norm bounded. 
                                                               D≤α                                                           (11)  
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3. The controller design 

1.3 Controller design without considering input saturation  
 
       The classical state feedback controller makes it impossible to reject the effects of 
disturbances, particularly input disturbances. One of the very useful methods of 
disturbance rejection is adding an integral state of error to the feedback controller to 
ensure a unitary static closed-loop gain, i.e., the gain between the reference command 
and the output associated to the reference. Also, it is used to eliminate steady state 
errors and ensure the tracking accuracy.  
In this section, OITASMC will be designed for second order systems with and without 
input nonlinearity. Before that, we briefly survey similar researches. In [26], PID 
controller has been designed with optimal gains, but this method is not robust against 
uncertainty and disturbance and just can improve the classical PID performance. A 
linear ASMC has been designed in [27], but it cannot ensure the finite time and robust 
stability. Finite time approach has been used in [28] for the problem of synchronization, 
but like [30] the upper bound of uncertainties and disturbance are necessary to be 
known. Also, integral action has not been considered. Finite time theory and feedback 
state have been introduced in [29], but this strategy is not appropriate for uncertain 
systems. 
In order to solve the tracking command problem, the error between states and 
commands with integral state are defined as below:    

r

r

r

kkk

kkk

kkk

xxe
xxe
xx

1222

121212

121212

−

−−−

−−−

−=

−=

−=

&

&ξ

                                                                                                                          (12) 

where  is the reference signal for the thi  state. 
It should be noted that an integral term has been added to state errors. This term 

makes it possible to achieve the zero steady-state error. Therefore, substituting Eq. (1), 
the error dynamic could be obtained as follows: 
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In order to design the sliding mode controller, an integral sliding manifold has been 
proposed to guarantee the system convergence to zero in finite time. In this paper, a 
novel non-singular PID sliding surface is introduced as:  
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where 2/,...,1 nc = , 10 << iα  for 3,2,1=i  and they are calculated as 
β

βα
231 −

= , 

β
βα
−

=
22 , βα =3 , where 10 << β  and p

kk , i
kk  and d

kk  are positive constants such 

that the polynomial i
k

p
k

d
k ksksks +++ 23  becomes Hurwitz according to the Lemma (3). 

According to the Lemma (3), it is obvious that if the finite time stability of the sliding 
surface is proved, the error trajectory will converge to zero for any initial state of 
system. It can be concluded that the system is stable and all of the error states converge 
to zero in finite time. 
When the system operates in the sliding surface, the following equations are satisfied: 

0)( =tsk                                                                                                                       (15) 
0)( =tsk& .                                                                                                                     (16) 

The first order derivative of the sliding surface is obtained as: 
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 Also, it can be rewritten as: 
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From the above equation, we get: 

)()(

)()()()(

1212

121212122

3

21

−−

−−−−

−

−−=

kk

kkkk
i
kk

esigne

esignesignke

&&

&

α

αα

τ

τξτξ
                                                (19) 

Consider the system error equations (13), the close-loop system can be rewritten as: 
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(20)  
Consider the proposed integral non-singular terminal sliding mode dynamics with Eq. 
(14). From Lemma (3), the sliding surface is a globally finite-time stable equilibrium for 
the system with Eq. (1). The reaching time for the convergence of the sliding surface is 
not estimated here, but we assume that there exist a finite time 1T  that system states 
converge to zero (their equilibrium) in this manifold. 

After establishing integral sliding manifold based on geometric homogeneity, a 
control law should be designed to force error trajectories to reach on the sliding surface 
within a finite time and remain on it forever, in the presence of bounded external 
disturbances, uncertainties and unknown parameters. In order to design a robust 
controller in the presence of bounded external disturbances kd  and uncertainties )(xfk∆  
should be determined precisely and unknown parameters should be estimated to be 
employed in control law. However in practice, they are fully unknown. In order to 
improve the robustness of the controller, the switching control is proposed as follows: 
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Defining the adaptation errors as ααα −= ˆ~ and kkk −= ˆ~ , the parameters k̂  and α̂  

will be estimated using the following adaptation laws: 
                                                        [ ] µα TxF )(ˆ =&                                                                  (22) 
                                                     [ ]Tksss ,...,, 21=µ                                                     (23) 

                                                    [ ]TkssstS ,...,,)( 21=                                                   (24) 

                                                        kk sk θ=&̂                                                               (25) 
Theorem1. For the error dynamics (13) with the control law (24), the states of the 
system are finite time stable and will be converged to the sliding surface 0)( =ts in a 
finite time as follows: 
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 where kω  is non zero term. 
Proof. Let choosing a positive definite function in the form of: 
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The derivative of  could be obtained as: 
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Substituting Eq. (17) into the above equation, we get: 
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From )(2 te k& with Eq. (19), we get: 
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Substituting )(tuk from Eq. (21) into the above equation yields:   
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According to the adaption laws Eq. (25) and using assumptions (2) and (3), we get: 
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by adding and removing )( kk ssignk  we obtain: 

( )
[ ]∑

=

+



















+














+−+−−−

=
n

k

TT

kkk

k
kkkkkkkkk xF

sk

D
s
sssignkssignkssignkXFtWts

tV
1

2 )(~

~

ˆ)()()(ˆ~)()()(
)( µα

θγ

αα
&

 
(34) 

Since [ ] µαα TT
n

ik
Kk xFxFts )(~~)()( =∑

=

 and ∑
=

=
n

ik

k
k s

ss 12 , we get: 

( ) ( )∑
=

+−



















+














+−+−−−

=
n

k

kkk

k
kkkkkkkkk D

sk

D
s
sssignkssignkssignkXFtWts

tV
1

2 ˆ
~

ˆ)()()(ˆ~)()()(
)( α

θγ

αα
&                                                                                            

                                                                                                                                    (35) 
then, the above equation changes to the below inequality: 
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Under Assumption (4) and since D+≤+≤− ααααα ˆˆˆ , it can be concluded  that 
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)1,/min( γλω . So, all the error trajectories will be converged to the 

sliding manifold in finite time. The above inequality holds if kλ , 0>Ωk  which means 
that )(tWk kk >  and 1<θγ k  and finally the lemma (3) yields to:  

( )
k

n

k
kkk kks

T
ω

αα

2

)0(ˆ
2
1)0(ˆ

2
1)0(

2
12

2/1

1

222

2









−+



 −+

≤
∑

= .   

 

2.3 Controller design with control singularity and input saturation 

In the previous section, it has been assumed that 0)(1 ≠− xgk  for uncertain nonlinear 
second order system with Eq. (1). However, in the practical system,  0)( ≠xgk   has a 
feasible solution at a particular moment which leads to the control singularity. 
Moreover, in special applications, input saturation has been applied because of some 
practical and mechanical considerations. Therefore, the control input considering input 
saturation constraints is employed as follows: 
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                                      (42) 

where kυ  is the designed control input. 
maxku and 

minku  are the unknown parameters of 
control input saturation where 

minmax kk uu ≠ . To analyze the effect of control singularity 
and unknown non-symmetric input saturation in terms of robust tracking control, the 
following command is applied [30]. 
                                            rkkkkk xgxg υτυ 12 ))()(( −+=                                               (43) 
where 0>kτ is a design parameter and rkυ  will become a new signal control in 
developed formation. It is clear that 1212 ))((1))()(( −− +−=+ kkkkkk xgxgxg τττ , so by 
substituting equations, one can obtain:  

( )
rkkkkrkkkkkk

kkkkkkkk

kk

xgtuxgXFxftxf
tdtuxgXFxftxftx

txtx

υττυα

υα
12

2

212

))(()()()()(),(

)()()()()(),()(
)()(

−

−

+−+∆++∆+=

++∆++∆+=
=

&

&

            (44) 

where kkk utu υ−=∆ )( . 
Since the upper and the lower limit of non-symmetric input saturation are unknown 

and bounded, )(tuk∆  is unknown. For robust performance, the new disturbance with 
bounded limit can be considered as follows: 

)(')()(),()(
)()(

2

212

tdXFxftxftx
txtx

krkkkkk

kk

+++∆+=
=−

υα&

&
                                                        (45) 

where 
 )())(()()()(' 12 tdxgtuxgtd krkkkkkkk ++−∆= − υττ                                                      (46) 
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Similarly, the proposed controller could be used for system with control singularity 
and input saturation in the same way where 

rkυ  is the control signal which can be 
achieved from Eq. (21).  
Remark2. In order to reduce the chattering effect of the sliding surface, a continuous 
function is adopted as [31]: 

k
k

k
k e

s
ss 10,)sgn( δδδ

δ
ρ +=

+
=                                                                              (47) 

where 00 >δ  and 01 >δ . 
 

3.3 Ant colony optimization 

     Ant colony optimization is used to achieve the best tracking performance. Since the 
ACO algorithm is very suitable for parallel working, the sliding surface constants could 
be tuned by the ACO in suitable ranges. Every two states of second order dynamic 
systems are controlled with one sliding surface which possesses three constant gains: 
therefore the number of parameters of the controller will be determined up to their 
degrees of freedom. To optimize the controller design with ACO, all of the values for 
each parameter are placed in different vectors. In order to create a graph representation 
of the problem, these vectors are considered as paths between nests. 

Each ant is placed at different or same corners, at the beginning of the problem. Eq. 
(51) (probability equation) determines these ants will situate on which adjacent node at 
time (t) [32]. 
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where )(tjiτ  is the trace amount of pheromones at ),( ji  at time t , )(tjiη is the visibility 
value between ),( ji , σ  shows the relative importance of the pheromone trace in the 
problem, β  denotes the importance given to the visibility value and iN  is a set of the 
node that hasn’t been chosen yet. The amount of pheromone trace is updated according 
to the following equation [33] 

( ) )()(1)( ttpnt jijiji τττ ∆+−=+                                                                                 (49) 
where  is the proportion of pheromone trace evaporated between t  and 1+t  time  
period )10( << p  and )(tjiτ∆  shows the amount of pheromone trace of the corner due 
to the election of the ),( ji during a tour of the ant. This value is reached from below: 

∑ =
∆=∆

m

k
k

jiji 1
ττ                                                                                                          (50) 

m  is the total ant number, k
jiτ∆  is the amount of pheromone trace left by thk  ant at 

),( ji  and computed from [26]: 

k

k
ji L

Q
=∆τ                                                                                                                   (51) 
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 Q is a constant and kL  is the tour length of thk  ant [26].  
It should be noted that the parameters of sliding surface have been chosen such that the 
conditions of Lemma (3) are satisfied. To solve this problem, the interval ranges of 
these parameters for ACO should be selected correctly. Furthermore, the flowchart of 
ACO algorithm has been introduced in Fig 1. 
 

Set ACO 
parameters

Create pheromone 
table

Max Ants

Multiply 
pheromone

Choose path based 
on maximum 
pheromone

Cost Function 
calculation

Update pheromone

Ant = Ant +1 Find best and worst 
path

Local pheromone 
update

Pheromone table 
update

Max Tour

Choose the path with 
maximum pheromone

Tour = Tour+1

Increase the 
pheromone values 

of the best path

Decrease the 
pheromone values 
of the worst path

 
Figure 1. The flowchart of the ACO algorithm. 

 
Some of the important advantages of ACO algorithm can be summarized as follows:  

• It has advantage of distributed computing. 
• It is robust and also easy to match with other algorithms. 
• When the values of graph changes drastically, the ant colony algorithm cab=n be 

run continuously and adapt to changes in real time. 



 

Finite Time Adaptive Optimal … A. Modirrousta, H. Delavari  
 
 

92 

 
Finally, a block diagram of the proposed control has been brought to show the overall 
scheme of the designed controller. 
 

Equivalent 
Control

+Switching 
Control and 
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parts

-Non-Singular 
Terminal 

Sliding Surface

∫ dtReference Trajectory 
of X, Y, Z and ѱ +

e
s

Disturbance 

+
+

Adaptive 
Laws

U

Cost 
function

ACO (optimal 
research)

Optimal 
Constants

                     ACO parameters

 Figure 2. A flowchart of the proposed algorithm. 
 

 

4 Case study 

The two-degree of freedom (2DOF) manipulator has been chosen as case study to 
demonstrate the effectiveness of the proposed controller. The dynamic equations of a 
2DOF polar robot manipulator are stated as below, considering external disturbances 
and unknown parameters (Faieghi et al., 2012): 
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                                                         (52)  

[ ]4321 ,,, xxxxX = is the state vector, where 1x  is the position of the center arm, 2x is the 
center arm speed, 3x  is the angular position of the arm, 4x is the angular velocity of the 
arm, µ  is the mass of motional link, M  is the payload, 1J  and 2J  are the moments of 
inertia of the motional link with respect to the vertical axis. )(1 td  and )(2 td are 
unknown but bounded external disturbances. All the noted assumptions are considered 
in the following simulations and these parameters are different with similar parameters 
in the controller. 
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5 Simulation 

     In this section, simulation results are given by MATLAB/SIMULINK software and 
ODE45 solver, to illustrate the effectiveness of the proposed controller in the presence 
of external disturbances and unknown parameters. The external disturbances are chosen 
as )4cos(3.0)(1 ttd π=  and )4cos(5.0)(2 ttd π= . The unknown parameters are chosen as 

11 =α and 12 =α  , where D in Eq. (11) are equal to 5 and 8. The parameters of the robot 
manipulator are set as: 5.1=M  kg, 1=µ  kg, 121 == JJ 2mKg   and 1=a  m. The 
initial conditions are chosen as the following vector: [ ]Tx 0.98,0360.2,-0.25,-)0( = . The 
desired trajectories are:  

mttx r )5.0cos(2.0)(1 =                                                                                                (53) 
radttx r )5.0cos(2.0)(3 =                                                                                            (54) 

The parameters of ACO algorithm are set as follows: 
Number of ants = 10; Pheromone = 0.06; Evaporation parameter = 0.95; Positive 
Pheromone = 0.2; Negative pheromone = 0.3; and Maximum tour = 10. 

Population based algorithm which have been introduced, need offline operation to 
optimize the different problems according to the cost function. Therefore, it is possible 
to gather a set of valuable training data around their paths of tracking or their 
equilibrium or even around their operating points in linear and nonlinear systems. A set 
of training data in the defined path of the robot for the special period of time has been 
considered as an input-output data in this paper. The proposed cost function has been 
chosen as following in order to increase the accuracy of tracking: 

∑
=

=
k

i
ieC

1

2                                                                                                                       (55) 

The gains of each sliding surface should be chosen as conditions of lemma (3). 
Therefore, Hurwitz stabilization condition leads to following inequality: 

[ ]maxmin ,kkk ∈ , d
k

i
kp

k k
kk >                                                                                                (56) 

So, the following inequality is resulted: 

(min)
(max)(min) d

k

i
kp

k k
kk >                                                                                                       (57) 

where each interval is chosen as [ ]16,101 ∈pk , [ ]5,01 ∈ik , [ ]9.51 ∈dk  and [ ]25,202 ∈pk , 
[ ]12,82 ∈ik , [ ]10,62 ∈dk . 

So the parameters of the controller are optimized as 101 =pk ,  1480.11 =ik ,  
9760.81 =dk  and 4100.212 =pk ,  8480.92 =ik ,  2160.92 =dk . 

The parameters of adaptation law are chosen 1=γ  and 5.0=θ  for all values of k .  
001.00 =δ and 01 =δ  are set for alternative sign function. 

The parameters of the control input saturation are 001.01 =τ , 01.02 =τ ,  70
max1 =u ,  

10
min1 −=u  and 50

max2 =u ,  20
min2 −=u . 

Figs 3 and 4 show the time response of systems output in the presence of disturbance 
and unknown parameters.  In these figures, a comparison study has been done to show 
the effectiveness of the proposed controller against conventional adaptive integral 
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sliding mode (AISMC) and integral sliding mode (ISMC [2]) methods. AISMC and 
ISMC use linear surfaces. As it can be seen, steady state errors and transient responses 
have been improved with using proposed method. Remark 2 has been used to decrease 
chattering effect that usually occurs in control input (Figures 7, 8). Figs 5, 6 show errors 
of state Eq. (13) where they convergence to zero in finite time. Augmented integral 
states guarantee zero steady-state error. Figs 9, 10 show the estimation performance of 
the adaptive gains, they have converged to their equilibrium from initial values. Sliding 
surface time responses are also shown in Figs 11, 12. 
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Figure 3. Tracking response of joint 1 without input saturation 
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Figure 4. Tracking response of joint 2 without input saturation 
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Figure 5. Response errors of joint 1. 
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Figure 6. Response errors of joint 2 :  (dash-dot line),  (dot) and (dash). 
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Figure 7. Control input  without input saturation 
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Figure 8. Control input  without input saturation 
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Figure 9. Time response of adaptation parameters without input saturation 
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Figure 10. Unknown parameters estimation,  (blue) and  (green) 
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Figure 11. Sliding surface for joint 1 without input saturation 
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Figure 12. Sliding surface for joint 2 without input saturation 

 
    The following figures display the controller performance in the presence of input 
saturation. Figs 15, 16 show the saturation effects in the control input. It can be seen 
that whenever the control signals have to be bounded by saturation action, the signal 
reshape to compensate this effects. 
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Figure 13. Tracking response of joint 1 with input saturation 

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (seconds)

x

 

 

x3
x3r

 
Figure 14. Tracking response of joint 2 with input saturation 
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Figure 15. Control input  with input saturation 
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Figure 16. Control input  with input saturation 
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Figure 17. Time response of adaptation parameters with input saturation 
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Figure 18. Time response of adaptive vector parameters  (blue) and  (green) with input 

saturation. 
 
 

The controller performance has been shown for another reference inputs in Fig 19. The 
tracking has been satisfied appropriately despite of defined disturbance and uncertainty. 
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Figure 19. Time response of reference input signals and joint 1 and 2 in the presence of uncertainty, 

unknown parameters and disturbance. 
 

 
                                                        

6 Conclusions 

In this paper, the tracking control of second order systems has been developed in the 
presence of uncertainties, disturbances, unknown parameters and input saturation. A 
robust adaptive integral sliding mode control based on finite time homogeneous 
approach has been proposed for second order systems with perturbations. Adaptive 
tuning law has been designed to deal with unknown parameters and the unknown 
bounded system uncertainty or disturbance. The upper bound of uncertainty and 
disturbances are not required to be known. Augmented integral state has been added to 
the controller for zero steady-state errors and robustness. 
Non-symmetric input saturation has been introduced to deal with singularity which may 
occur in input control or in practical applications. Since, choosing desired constant 
parameters of the controller is difficult, ant colony optimization has been used to deal 
with this problem in offline tests among specified intervals. The stability of the 
controlled system is proved using Lyapunov stability criterion. Simulation results 
demonstrate the advantages and performance of the proposed strategy. 
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