- Keller MW, Lipscomb GL, Nguyen DM, Crowley AT, Schut GJ, Scott I, Kelly RM, Adams
MW. Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases. Microb Biotechnol. 2017; 3. DOI: 10.1111/1751-7915.12486. 2. Lavudi S, Oberoi HS, Mangamoori LN. Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology. Biotech. 2017; 7: 233.
3. Hatami ou si H ah ami a . imu ta ous saccha ificatio a d m tatio ( ) o rice cooker wastewater by using Aspergillus niger and Saccharomyces cerevisiae for ethanol production. J Appl Res Water Wastewater. 2015; 2(1): 103-107. 4. Liu, Z, Inokuma K, Shih-Hsin H, Riaanden H, Willem H Tomohisa H, Akihiko K. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae. Biotechnol Bioeng. 2017; 114: 1201-1207. 5. Moshi AP, Hosea KM, Elisante E, Mamo G, Mattiasson B. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. Bioresour Technol. 2015; 180: 128-136. 6. Okonkwo CC, Azam MM, Ezeji TC, Qureshi N. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis. Bioprocess Biosyst Eng. 2016; 39(7): 1023-1032. 7. Verma G, Nigam P, Singh D, Chaudhary K. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour Technol. 2000; 72(3): 261-266. 8. Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol. 2010; 101(13): 4744-4753. 9. Sebayang AH, Masjuki HH, Ong HC, Silitonga AS, Kusumo F, Milano J. Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind Crops Prod. 2017; 97(2): 146-155 10. Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006; 69(6): 627-642. 11. Oberoi HS, Vadlani PV, Brijwani K, Bhargav VK, Patil RT. Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem. 2010; 45(8): 1299-1306. 12. Sakthi SS, Saranraj P, Rajasekar M. Optimization for cellulase production by Aspergillus niger using paddy straw as substrate. Int J Adv Sci Tech Res. 2011; 1: 68-85. 13. Liu K, Zhang J, Bao J. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications. Bioresour Technol. 2015; 196 (2): 716-720. 14. Aderemi BO, Abu E, Highina BK. The kinetics of glucose production from rice straw by Aspergillus niger. Afr J Biotechnol. 2008; 7(11): 1745-1752. 15. Hatamimanesh M, Younesi H, Bahramifar N. The production of glucose used in ethanol production through an enzymatic hydrolysis of rice mill by Aspergillus niger. J Microb World. 2015; 8(3): 231-240. [In Persian] 16. Ardestani F, Kasebkar R. Non-structured kinetic model of Aspergillus niger growth and substrate uptake in a batch submerged culture. Brit Biotechnol J. 2014; 4(9): 970-977. 17. Amini M, Younesi H, Bahramifar N. Biosorption of nickel (II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study. Chemosphere. 2009; 75: 1483-1491.
18. Marangoni AG. Enzyme kinetics: a modern approach. Published Online. John Wiley & Sons; 2003. doi: 10.1002/0471267295. 19. Kothari R, Kumar V, Pathak VV, Ahmad S, Aoyi O, Tyagi VV. A critical review on factors influencing fermentative hydrogen production. Front Biosci. 2017; 22: 1195-1220. 20. Chen HC. Non-aseptic, multi-stage, multi-feeding, continuous fermentation of cane molasses to ethanol. Process Biochem. 1990; 25(3): 87-92. 21. Ghorbani F, Younesi H., Esmaeili Sari A, Najafpour G. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renew Energy. 2011; 36(2): 503-509. 22. Miller G L. Use of dinitrosalicylic acid reagent for dtermination of reducing sugar. Anal Chem. 1959; 31(3): 426-428. 23. Gonçalves FA, Ruiz HA, Silvino dos Santos E, Teixeira JA, de Macedo GR. Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew Energy. 2016; 94: 353-365. 24. Bailey JE, Ollis DF. Biochemical engineering fundamentals. Chemical engineering education. 1976. 25. Grous W, Converse A, Grethlein H, Lynd L. Kinetics of cellobiose hydrolysis using cellobiase composites from Ttrichoderma reesei and Aspergillus niger. Biotechnol Bioeng. 1985; 27(4): 463-470. 26. Sohail M, Siddiqi R, Ahmad A, Khan SA. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol. 2009; 25(6): 437-541. 27. Pedersen H, Nielsen J. The influence of nitrogen sources on the α-amylase productivity of Aspergillus oryzae in continuous cultures. Appl Microbiol Biotechnol. 2000; 53(3): 278-281. 28. Karimi k, Beagi A. Effect of temperature, pH and glucose concentration on ethanol production by the fungus Mucor indicu. Iran Chem Eng J. 2010; 9(50): 38-43. [In Persian] 29. Saha BC, Nichols NN, Qureshi N, Cotta MA. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol. 2011; 92(4): 865-874.
|