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Abstract

Thickness stretching effect based on shear and normal deformation theory is used in this paper for magneto-
electro-elastic vibration analysis of a three-layered curved nanobeam including a nano core and two
piezo-magnetic layers. Size-dependency is included in derivation of governing equations of motion based
Eringen's nonlocal elasticity theory. The initial curvature is accounted in calculation of external works due
to pre-mechanical, electrical and magnetic loads. The analytical method is presented to study the effect
of significant parameters on the vibration characteristics. The numerical results are presented in terms of
initial electro-magneto-mechanical loads, size-dependency parameter, opening angle, two parameters of

Pasternak's foundation and core thickness to face-sheet thickness ratio.
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INTRODUCTION

Shear deformation theories have been
developed to model kinematic relations in various
structures such as beams, plates and shells. Most of
these theories assumed that transverse deflection
across the thickness direction is constant and do
not varies with change of thickness coordinate.
These limitation leads to inaccurate results for
thick walled shells, plates and beams. Shear and
normal deformation theory has been proposed to
calculate thickness stretching for more accurate
calculation of deformations and stresses across
the thickness direction. This theory considers
thickness stretching through employing a function
for transverse function in terms of thickness
coordinate. In this paper, magneto-electro-elastic
vibration analysis of a three-layered curved nano
beam is presented based on nonlocal elasticity
theory and shear and normal deformation theory.
One can conclude that combination of this topic
with some non-classical theories such nonlocal
elasticity theory leads to significant issue in size-
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dependent analysis of structures. Literature
review is presented here based on published
works on the shear and normal deformation
theory, nonlocal elasticity theory and curvilinear
coordinate system.

Zenkour [1] presented an analytical work on
the bending analysis of cross-ply laminated and
sandwich beams based on higher-order shear
deformation theory accounting shear and normal
deformations. The numerical results were presented
for simply-supported beam in terms of important
parameters of the problem. Arefi and Zenkour [2]
used a simplified shear and normal deformations
nonlocal theory for bending analysis of functionally
graded piezomagnetic sandwich  nanobeams
in  magneto-thermo-electric environment. The
influence of magneto-electro-thermal loads was
studied on the bending results of nanobeam. Shi
[3] analyzed bending behaviors of a piezoelectric
and functionally graded curved actuator based on
theory of piezo-elasticity subjected to an external
voltage. The influence of power index of functionally
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graded material was investigated on the results and
the obtained results were approved by comparison
with finite element approach. Koutsawa and Daya
[4] presented static and free vibration analyses
of laminated glass beam rest on viscoelastic
foundation based on finite element method. Qian
et al. [5] presented static, free and forced vibration
analysis of thick rectangular functionally graded
elastic plate based on higher-order shear and
normal deformation plate theory. The problem
was solved using a meshless local Petrov—Galerkin
method. Bending analysis of a functionally graded
piezoelectric curved beam subjected to external
electric potential was studied by Shi and Zhang
[6]. Theory of piezo-elasticity was employed for
derivation of the governing equations of the
model and the bending results were derived using
Taylor series expansion method. Belabed et al.
[7] employed a simple higher-order shear and
normal deformation theory for dynamic analysis of
functionally graded plates. Based on this theory, the
transverse displacement is divided to three parts
including bending, shear and thickness stretching
parts. A hyperbolic variation was assumed
for thickness stretching function to overcome
limitation of other theories and satisfies free stress
boundary conditions on top and bottom of plate.
The numerical results were compared with those
results using three dimensional and quasi three
dimensional solutions. Zhou et al. [8] studied the
transient analysis of a curved piezoelectric beam
with variable curvature as piezoelectric vibration
energy harvester. Bousahla et al. [9] studied the
influence of stretching effect on the static analysis
of functionally graded composite plates based on
a trigonometric higher-order shear and normal
deformation theory. The concept of neutral surface
was included in the derivation procedure. They
concluded that employing the concept of neutral
surface effect on the formulation procedure
eliminates stretching—bending coupling effect and
reduces the governing equations to the simple form
of those derived for isotropic materials. Hajianmaleki
et al. [10] presented a complete review on the
vibration analysis of straight and curved laminated
composite beams based on various analytical and
numerical methods such as shear deformation
theory and finite element method, respectively.
Rahimi et al. [11] studied electro-elastic analysis of
functionally graded piezoelectric material cylindrical
shell. The effect of electric potential was studied on
the bending results.
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Arslan and Usta [12] employed theory of
elasticity for electro-mechanical analysis of a
curved bar. The results of problem were verified
using comparison with previous works including
an actuator under an initial electric potential.
The influence of the applied couple has been
studied on the electro-mechanical results such as
displacement and electric potential distribution.
Arefi [13] studied elastic solution of a curved
beam made of functionally graded materials with
various cross sections such as circular, rectangular
and triangular. The influence of some important
parameters such as non-homogeneous index and
various cross sections was investigated on the
stress distribution of curved beam. Houari et al.
[14] studied thermo-elastic bending analysis of
functionally graded sandwich plate based on a
higher-order shear and normal deformation theory
by dividing the total transverse displacement into
bending, shear and thickness stretching parts.
Sinusoidal variation of displacement across the
thickness direction was assumed to account
thickness stretching and also satisfies free-shear
stress boundary conditions on the top and bottom
of plate. The influence of significant parameters
such as thickness stretching, shear deformation,
thermal load, plate aspect ratio, side-to-thickness
ratio, and volume fraction distribution on plate
bending characteristics, were studied in detail.
The influence of applied electric and magnetic
potentials on the sandwich rod, beam and plates
was studied in various works [15-19]. Bourada et
al. [20] used a refined trigonometric higher-order
shear and normal deformation beam theory to
account thickness stretching effect. In addition,
Timoshenko beam theory and the concept of
neutral surface effect were accounted to derive
governing equations of motion. Natarajan et al.
[21] studied size dependent free vibration analysis
of functionally graded nanoplates based on iso-
geometric finite element method and Eringen’s
differential form of nonlocal elasticity theory.
The effective material properties were calculated
based on Mori-Tanaka homogenization scheme.
Bennai et al. [22] studied free vibration and
buckling analysis of functionally graded sandwich
beams based on refined hyperbolic shear and
normal deformation beam theory. Gradation
of material properties were accounted for all
material properties along the thickness direction.
The influence of varying gradients, thickness
stretching, boundary conditions, and thickness
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to length ratios was studied on the bending, free
vibration and buckling of functionally graded
sandwich beams.

Some important studies on piezo-magnetic
analysis of structures can be observed in
references [23-24]. Ebrahimi and Barati [24]
employed nonlocal elasticity to study the buckling
behavior of curved magneto-electro-elastic FG
nanobeams based on principle of virtual work
and Euler-Bernoulli beam theory. The gradation
of material properties was considered based on
power-law function along the thickness direction.
One can conclude that although references [21,
24] mentioned buckling analysis of curved beam,
however the influence of electro-magnetic loads
of curved nano beam on the bending behaviors of
structure has not been performed by the same and
other researchers. Nonlinear vibration analysis of
functionally graded porous micro/nano-plates
reinforced with graphene nanoplates was studied
by Sahmani et al. [25] based on nonlocal strain
gradient theory. The von-Karman nonlinear strains
were included in kinematic relations. Larbi et al.
[26] studied bending and free vibration analysis
of functionally graded beams based on shear and
normal deformation beam theory and physical
neutral surface effect. A hyperbolic function
was used for distribution of shear stress across
thickness direction. Yu et al. [27] presented elastic
analysis of initially curved and twisted anisotropic
beams based on three-dimensional elasticity
theory and Timoshenko theory. Nonlocal elasticity
was used for buckling and free vibration analysis of
nanosheets [28], single walled carbon nanotubes
[29] and non-uniform nanobeam [30]. Ghasemi et
al. [31-32] presented some computational design
methodology for topology optimization of multi-
material-based flexoelectric composites and a
design methodology based on a combination of
isogeometric analysis, respectively. Hamida et al.
[33] studied the sensitivity analysis of a flexoelectric
nanostructure based on NURBS-based IGA
formulation. The numerical results indicated that
the flexoelectric constants are the most dominant
factors influencing the uncertainties in the energy
conversion factor. The effect of flexoelectricity was
studied on the topology optimization and dynamic
responses of flexoelectric nanostructures [34-35].

The literature review was completed by
considering the reports including various analysis
of curved structures and application of shear and
normal deformation theory to various analysis
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of beams and plates. This review indicates that
although some important works on the curved
beams and application of shear and normal
deformation theory to various analysis of the
beams have been published, however it can
be strongly verified that there is no published
work about size-dependent magneto-electro-
elastic vibration analysis of three-layered curved
nanobeams subjected to mechanical, electrical and
magnetic loads resting on Pasternak’s foundation.
To account thickness stretching effect and size-
dependency, the shear and normal deformation
theory and Eringen nonlocal elasticity theory
are used respectively. The governing equations
of motion are derived based on the Hamilton’s
principle. The effect of initial magneto-electro-
mechanical loads is investigated on the natural
frequencies of three-layered curved nanobeam.

MATERIALS AND METHODS

Shear and normal deformation theory is used
to accounts thickness stretching for magneto-
electro-elastic formulation of a three-layered
curved nanobeam (Fig. 1) subjected to magneto-
electro-mechanical loads. Based on this theory,
we will have displacement field as follows:

rdé r a6 (1)
u, = w(0) + w,(0) + ¥,(2)9(6)

where u(8) is displacement of the middle-surface
along transverse direction; w, and w_are the bending
and shear components of the radial displacement u,,
and gis a function that accounts thickness stretching
as function of 6. In addition, r is local radius and z is
measures from middle surface in which the relation
between them is expressed as: r=R+z (Fig. 1). The
above displacement field shows that the term ¥,
(2)6(9) is applied to account thickness stretching in
displacement field. The shape functions associated
with refined shear and normal deformation curved
beam theory are presented as [1, 2]:
Y(2)=z— gsin (%), ¥,(z) = cos (%), (2)

The normal and shear strain components are
expressed as:

w, w, W, (z 1ou z d*w, 1 d?w,
o= e Ty L - )
1 10w, z dw, 10w,
Yo = Ut o T2 T a)
S e i
r2 e T T2 00
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Fig. 1: The schematic Figure of a three-layered curved nanobeam.

The strain components are considered for both
core and piezomagnetic sections. It is assumed
that piezomagnetic layers are completely attached
to core with no discontinuity. Based on this
assumption, the displacement filed is assumed
continuous between core and piezomagnetic
layers. In addition, it is assumed that piezomagntic
layers are subjected to intial electric and magnetic
potentials along the thickness direction.

The constitutive relations for isotropic core are
defined as [15]:

(1= &2VH) a5 = Cgpgy €6,
(1= &*V))15p = Cloro Vro

(4)

in which cf,, are stiffness coefficients of elastic
core, V 2 is Laplace operator in polar coordinate
system and é=e, a is nonlocal parameter.
Furthermore, the constitutive relations for
piezomagnetic layers are defined as [6, 15, 19]:

(1= &272)a] = Clhoyy €0 — €, Er — dbg, Hrs (5)
22y — (P » v
(1 =$V*)15 = Crorp Vro — €rop Eo — droo Ho,

in which Gk are stiffness coefficients of
piezoelectric layers, e, are the piezoelectric
coefficients and 4} are piezomagnetic coefficients.
E and H, are the components of electric and
magnetic fields, respectively that are defined as
[15-19]:

P 10y

o T e (6)
g 19¢

=5 M="7%"
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The electric and magnetic potentials are
assumed as [15-19]:

v T
Y(r,0) = —1(0) cos (EP> + Ep'

p 2 (7)
¢(r,0) = —¢(6) cos (hl p) + % o,
p (4

In which ¢, ¢, are applied electric and
magnetic potentials, p=<iﬁihz_‘° for top and
bottom piezo-magnetic face-sheets. Substitution
of electric and magnetic potentials from Eq. (7)
into Eq. (6) gives electric and magnetic fields as
follows:

. m (T AN _ 1oy T
E,. = hpl/)sm<hpp) hp' Eg—ragcos hpp,

wo T (TN 2 _10p  (w (8)
r= T M) T, P = v kP

(2

The electric displacement and magnetic
induction along the radial and circumferential
directions are derived as [15-19]:

(1-¢&2vH)D! = el ey + €L E, + mbH,,
(1 —-&*vH)D) =€} , v, + €hy Eg + mh, Hy,
(1-&*VA)B! = qiggep + M Er + i Hy, (9)
(1= &°V®)BY = qp,q¥ro + mpgEg + Uy H,

in which m, and W, are dielectric and
electromagnetic coefficients. Substitution of
strain, electric and magnetic fields into constitutive
relations leads to following relations for core and
piezomagnetic layers as:
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Core:

2
S wy, w, W,(2) 1ou zd*w, 1
(1-§°V)og = Cgesefa[r t oVt S T2 1(2) d02

1 10w z dw 10w, 1 w, 1 09
2p2)pe = [ SO Z T TS o w () —].
A= 8Vt = CoreYro |~7 4+ 155 20239 t730 T 2211 @ +7 (@5

(10)
Piezomagnetic layers:
252 p w,(z) 10u z d?wy 1 dzw 2y
(1—{ V)UH CGG@B —+—+ z 19+;£_T_2—d92 —T—ZlPl(Z) dGZS 697‘[ l,[)SlIl( )+h—:]+
i 26,
door [,’f—p ¢ sin (h—’; p) + h—:] (11)
1 10w, z dw, 10w, dw. o T
1-&vd)h, = rere[ ;u+;6_9b+27'_2d_9b+__s+2 LGB WZ(Z)BG]—efge;£COS<Ep)—
19¢
que;ﬁcos (h—2p> (12)
w, w, W, (2) 19u z d?w 1 d?w. m . bud 2y
(1= E2VAD] = efyy [ 472 + 220 4150 — ST~ S0 (@) G| = el | wsin (E”)*n_:]‘
P | psin(Z 2¢o
b [ sin(Zp) +32] (13)
1 19 d 19 d 19
(1-&2v®)D) =eb , [—;u+;al:+2riz%+— W5+2 ;¥ (2) WS +- lIJZ(Z) ]+€99—£COS<ZP)+
10
mb, ;£ cos (é p) (14)
w ( ) 10u d? : 2y
(1= §272)BY = drg [%—l—v; == = Vti5 _:_2 d;vzb_ . (z ) d02 —mfr [ilpsm(%p)+h—:]—
P [7 4 (1 ) m]
sin + 15
ey [ psin (Zp) + 32 (15)
19 d 19 d
(1- §272)B] = qhg¥re [~ 2 u+352 42 250 4 22 4 9 Ly () 22 429, (2) 2o + mpy 2 a‘ﬁcos(pp)+
Hoe ;%COS( pP)- (16)

The Hamilton's principle 6 (T+V-U) = 0 is employed to arrive the governing magneto-electro-elastic equations of
motion. The variation of strain energy &U is defined as:

oU = fff (099 6899 + 0,9 6Vrg —DrﬁEr - Dg(gEg - BrSHr - Bg(SHg )dV (17)
4

By substitution of volume element dV = brdrd® = b (R+{) d{d© and variation of strains, electric and magnetic fields
into Eq. (9), we will have:

asu d2s 28wy a8
oU = fff {[Ngg(swb + N995WS + ng619 + 099 = 20 Mgg de‘;/ 599 dﬁ‘: ] + [_N‘r95 u+ Nrg % +
2Myg S 4 Nyg 225 4 25, 505 4 Pg 27| + D, 69 — Dg 2L + B,6¢p — By 2)d6
(18)
in which the resultant components are defined as [15-19]:
{Nij, Sij, Mij, Pj} = f Uu{l ¥, (2), 2 :lpz(Z)}df (19)
{D,,B,} = f e T—sm( ){Dr, B }d¢ + fhe rh—sm< ){Dr, B,}d{, (20)
_ e +hy (21)
(Do, Bo} = 42, cos () (Do, Bl + fhe ? cos (1) (Do Bo)s.
2
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Based on the above relations, the resultant components are calculated as follows:

d?wg

_ du d?w, P ¢

(1= §2720Ng = Ay (wy + W, +52) + Az9 = A3 2 — A, T+ Agp + NJ° + A + NJ°, (22)

(1= §20%)Neg = A (—u + 522+ 225 4 24, 520 4 24,52 + Ay 50 — Ay, 20— A, 22, (23)
a dz d?

(1= §272)My = Ay (wy + W, + 22) + Aig® = Ayy "2 = Ays S5+ Aygth + MY + Agyp + MY, (24)

a a ayp a¢
(1= §2V)Mpg = Ag(—u+ =L+ =) + 24,520 ot 2A19 s 4 A0 2 o~ A2155 — Az o (25)
a d? d?

(1 - &27%)Sgg = A3 (Wb +wg + %) + Az — Ays Vu;b — Az VM;S + Ay + 55”" + Az + S(‘f", (26)

(1= §272)Syp = Agg(— U+ 52+ 22 4 2430 T2 + 245, 52 + Asy 50 — Asy 55 — Asa 50 (27)
a d? d?wy

(1= §272)Pg = Ay (W + Wy +35) + Ags® — Arg VW;’ - Agsﬁ + Asp + PP + Asgp + PP, (28)

(1=§%V*)Pg = Ao(—u +aﬂ + %) + 2Azo a0 ? + 2455, dws + A39 50~ Aao alp Ay Z(g (29)

— o d? d? S

(1= §272)D; = Ag (Wp + Wy +52) + Agy® — Ayg o — Ayy S = Agtp — DY° — Aggp — DY, (30)

(1= 272D = Ay (—u+ 22+ 20 4 24, 20 4 245, %% 1+ A, 2+ A5 20+ A, 2L (31)
a d?

(1= §*V*)BY = Ag(wp +ws + 5) + Azgd — Ay dgvzb Azs dgz —Apyp - B —Aud - B; %o, (32)

a a d d
(1= §272)B] = Arp (—u + 22+ 2) 1+ 24, 22 1+ 243, 5% + Ay 2+ Ayg o2 + Ay 22 (33)
in which the integration constants A, A,,... calculated as follows:
are expressed in the Appendix. In addition, the L du
variation of energy due to external works is given Wexe = fg (No + Ng + Ny) T)Z rdd.  (36)

by

sv =, (Rfaurzz_%_hp —gou, )SquA, (34)

z=+%+h,,
in which Rfis reaction of Pasternak’s foundation.
Note that in spite of all previous papers, the
external work by multiplication of reaction
of foundation and uniform load in transverse
deformation of bottom and top, respectively. The
reaction of Pasternak’s foundation is defined as:

Ry = Kyu, — K,V?u,, (35)

where K, and K,are spring and shear parameters
of foundation. In addition, the variation of work
due to initial electric and magnetic potentials is

o1 = [ff, ([-Buii + B, %2 dg ~ By %% 6 + [-B, & + B, L2

de
d? Wb
dg?

i
[-B5 55 + Bs
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+ By S — By, — By ity — By | Swy — B,y + By i + By]50)d6.

In which N .N_N,, are mechanical, electrical and
magnetic pre-loads. These preloads are defined as:

{Ng, Ny} = fhe —p Z:JO €090 :—Cleeep}dz‘l‘
37)
—<+h 2 (
fhe ’ wo €006 '—:qgeep}dz-
In addltlon, variation of kinetic energy is defined
as follows:
8T = [Jf, (gSttg + i, 81,)brdldo (38)
By substitution of displacement field into Eq.
(37) and integration by part and then definition of
integration of constants, we will have variation of
kinetic energy as follows:

d?wg . . a
0 4 By S — By, — By Wy — B9 6w, +

(39)
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Substitution of variations of strain energy, kinetic energy and energy due to external works into Hamilton's principle
6T — 86U + 4V yields:

Su: = Nyg— 282 = —Byii + B, 52 — B %, (40)
Bwi: Ngg — 222 — ‘?j,”—; — 25228 4 (N + Ny + Ny) (R+h7i+hp) Lot wt¥20) = Kyu, ~ K, m%‘z Cq-
2
B, SZ + B, d::;b 35 dez — By, — By g = B, ¥, (41)
ows: Noo = % B ag—ere —2 dsre + (No + Ng + Ny) (r+ —1+hp) dZ(Wb:l:ZSWZﬁ) = Kiu, — K, mfg —q-
;
By g+ Bs g+ B gyt — Buviy — By iy — By, (42)
59: Pog — 222 + (No + Ny + Nyy) (R+h71+hp) Lot weteD oy, (2= +2 4 by ) = Ky, -
Z(R—%;—hp)z%)qu (Z = —% - hp) - q¥, (z = +% + hp) — [BsW, + By W, + Bgl] (43)
sp: — D, —% 0, (44)
6¢: — B, - dﬁ =0. (45)

Substitution of resultant components into governing equations leads to final equations as follows:

Su: — A1y +A7u+A3 L (A7+2A8+A1)dwb+A4dd9VZ5—(A7+2A9+A1)%—(A10+A2)%+
d d dw
(Aus — As)£ + (Ar, — Ag) "’ = (1 - §27)[-Byii + B, 52 — B, 5], (46)
BWy: = Ayl (Ay + 245 + A7) Sh + Ay S22 (A3 + Az + Ay + 245 + 245 + 4415 — (1 - E27D)K, %) Lwy 4
(R=T-p) ) 40

d?wg
(4; = (1= 7K )Iw, + Ays S <A7 + 249 + 245 + 4419 + Ay + A5 — (1 - E272)K, 7h)> (A - (-
2 P

he
EZVZ)Kl)ws—<A13+A10+2A20+(1—52\72)K2—hjh))dgz (4, - - e2v2mw, (2=~ 2= 1) )9 + Ay +
2 '

(-

245, — Ayg) Y o b A+ (Any + 24, — A1) S22 o 1 Agh = (1 - &27%) |Kyu, — KZW 392] (1-87%)q+ Q1 -
2
dii d?w . 5
§272)[~By 5 + By d;”;+35 57— B, = By i — B; 9], (47)

Swy: — Ayy U (@A + Ay + A4 Ay S (Az3 + Ay + 245 + 2450 + 4430 + A; — (1 —

dZ
E27DK, ) = - )2> o2+ (41— (1= E7DK)w, + Agg Ts T <A7 + Agz + 2459 + 240 + Ay + 445 — (1 -
2

1 d?wy 1
E2V) Ky —— | To + (Ay = (1 = E2VD)K )y — | 245, + Ay + Arp + (1 - EZVZ)th— o T (A - (-
(R--ny) ) 4© (R‘f‘hp) @@

he
7KW, (2= =2 = ) )9+ Qs + Ayy = Apy) T + At + (Ary + 250 — Agg) T2+ A = (1= §277) Ky, —

1 2
? (r-teon, )’ 26
2

d Y » ..
] -(1-&73)g+ QA -&ry[- 33 0 L By d:zb + Bs dgz — Bywy, — By ws — By,

(48)
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du - he dw,
601 (A + A10) g5 = (a0 + Aus + As = (1= £272)Ky —— 2‘1’2(2——7—hp)) o+ (4
(k=% 1)
h 1 d?w,
—-(1-8VHK ¥, (Z = —79 - hp))wb — (436 + Ay + 245, — (1 — fZVZ)Kzﬁ 2, _he ) dgzs (42
(2% -1)
272 272 1 2 d219
— A=V, W — (Ago(1 = E27Ky—————— W, 5, D
==F he z=-"en, ' do
R—=—h,
+(Ass — (1 — 272K, W O+ Aol 4 Aprp + Ay S2 4 Aggp = —(1 - E27D)q¥,  n , —(1—
35 1 2z:—%—hp 40 Jpz 37 41 g2 38P = q 2z=le p,
§2V2)[Bviny + By g + Byl (49)
d d2 d?wy dz9 dzyp
8P (Ary — As) 35 + (Arg — 2401 — A1) 55t — Aswiy + (Agy — Apy — 2A433) 7 — Asws — Aso g7 — Asy® — Aus gy +
dZ
Agah — Ay d_gtf + Az = —Dfo - D;b”. (50)
d d? d?wg dz9 a2
6¢: (A1z — Aq) £ + (A1y = 245, — Arp) W‘? = AeWp + (Azg — A1 — 2434) # — AsWs — Ay1 557 — Azg? — Ags % +
dZ
Ayztp — A47dTl§ +And = _B;po - Br¢0- (51)
RESULTS AND DISCUSSIONS in which a=mnR/L. Substitution of proposed

In this section, the solution procedure for free solution into governing equations of motion leads
vibration analysis is developed. The proposed to below equation:
solutions for a simply-supported three-layered
curved nanobeam are expressed as: [K1{X} = {F} — w*[M]{X}, (53)

u .
{[Wb: wq, 9,1, ¢]} = Zm=135€"" in which {X}={U,,U,,U;,¥,®} is an unknown
vector corresponding to five unknown functions.
The symmetric elements of the matrix [K], [M] are
expressed as:

U cos(ab) (52)
{[Wb, W, V,¥, @] sin(a@)}'

Ky = Aja? + Ay, Ky, = —Aza® — (A, + 24g + ADa, K3 = —Aa® — (4, + 244 + A)a,
Kiy = —(Ao + A)a,  Kis = (A1 — As)a, Kig = (Arz — Aga,

2,2 2,2 2,2
M11=_Bl(1+§a/Rz).Mu:Bz“(l‘*'fa/R2)1M13=_33<1+€a/R2)

Kyy = Aza® — (A + 24 + A))a, Koy = +Apa* + (A3 + A + Ay + 245 + 245 + 44,5 — (1 + E2a?) e Ya?+ A, —(1+

(R—"—hy)?
fzaz)Kp

Kys = +Ajsa* + (A; + 249 + 24g + 4419 + Ay + A3 — (1 + E2a?) e Ya? + Ay — (1+ E2a?®)K,, Koy = (Agz + Agp + 2450 —

(R 2= h,)?

(1 +$Za2)K2 )az + 4, _(1 +EZaZ)Kl v, (Z= _%_hp):

he
(R =2 = hy)?
Kps = —(Ayy + 2451 — A1) a® + As, Kpg = —(Arp + 245, — Ay)a® + A,

2,2 2,2 2,2
M21=Bza(1+f“/Rz).Mzz=_B4<1+fu/Rz)az_B1(1+§a/R2)»

2,2 2,2 2,2
May = =Bsa (1457 o) = B (1457 /o) Mo = =B, (14577 )

Ky = —Ayza® — (2459 + A, + A)a, K3y = +A5sa* + <A23 + Ay + 245 + 2459 + 4450 + A3 — (1 + E2a?) ke ® he _p )2> a?+ A —
T2
1+ &%a?)K,,

Ksz = +A56a" + (A7 + Agz + 2459 + 249 + Ay + 443, — (1 + E%a?) K, " Ya® + A — (1 + E%a?)K,,
(R ==~ hy)?
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Ky = + (ZA32 + Ayy + Ay — (1 + &2a?) Ky e Z)
R="2_h,)
Ayy)a? + Ag, Ky = —(Ayp + 2435, — Azg)a® + Ag

he

@+ A ——(1+ Ea)K W, (2= =2 = b, ), Kos = — (2435 + Ay —

2

2,2 2,2 2.2
My = =By (1457 /g ) My = =Boa? (1487 [ ) = B, (1457 o)

2,2 2,2 2,2
M33=_Bﬁa2(1+fa/Rz)_Bl(l"'fa/Rz)/M34=_B7<1+€a/R2)

Ky = —(Az + A1), Kyp = | 2450 + Agz + Ay — (1 +§2a?) ke

he K.
—2—hy), Kas = | Az + Asg + 245, — (1 + £2a?) 2

R—2t—h,)

(R=5%-m)

Y, (z =—Z_ hp) a?+ 4, — (1 + Ead)K, P, (z =

¥, (z = —%—h,,) a? + 4, — (1 + &2a)K, ¥, (z = —%—hp),

Ky = <A39 - (1+¢%a? KZ/(R he _p )z [Lpz (Z = _%_ hzﬂ)]z> a?+ Az — (1 +8%a?)K; [Wz (Z = _%_ hn)]z‘K“S = —Agya® +
~te_h,

Az, Kue = —A310% + Asgg,

2,2 2,2 2,2
M42=_B7(1+§a/Rz).M43=_B7<1+§a/Rz),MM:_BS(l"'{a/Rz>

Ks; = —(A11 — As)aKsy = —(A1g — 2451 — Ap)a? — As,  Ksz = —(Apy — Ay — 2433)0” — As, K5y = +4400% — Azy,  Kss = +A450° +

A, Ky = +As6a% + Ay,

Ky = —(A12 — Ag)a,Kgy = —(A17 — 2455 — A1p)a? — Ag, Koz = —(Apg — A1y — 2434)0” — Ag, Kgy = +A410% — Az,  Kgs = +A40° +

Ays, Koo = +A470% + Agsp.

In this section, the numerical results of the
problem are presented. Before presentation of
numerical results, the material properties of
elastic core and piezomagnetic layers should be
introduced [23].

Core:
E =210GPa, v =0.3,

Piezomagnetic layers [36]:

Chope = 286 GPa, CP, . = 453 GPa,

ebor = ehgp = =44 (C/m?), e} , =11.6 (C/m?),
dher = Qb = 580.3 (N/Am), qh,, = 550 (N/Am),
€l =93 %107 (C/mV), €5, =8x 10711 (C/mV),
ml, =3 x 10712 (Ns/CV), mp, =5 x 10712 (Ns/CV),
uh =157 x 107* (Ns?/C?), b, =

—5.9 x 10™* (Ns2/C?).

In continuation, the responses of three-layered
curved nanobeam due to initial magneto-electro-
mechanical loads are investigated. The vibration
responses are including 1%, 2" and 3" natural
frequencies. Table 1 lists variation of 1%, 2" and
3" natural frequencies of three-layered curved
nanobeam subjected to initial electric potential W .

56

The numerical results indicate that with increase of
initial electric potential W  the natural frequencies
of three-layered curved nanobeam are increased
significantly. It is concluded that with increase of
initial electric potential, the electrical pre-load
of curved nanobeam is increased and then the
natural frequencies are increased. Furthermore,
this conclusion is in accordance with results of
Reference [28, 29].

The influence of initial magnetic potential @,
on the natural frequencies of three-layered curved
nanobeam is listed in Table 2. The numerical
results show that with increase of initial magnetic
potential, the natural frequencies are decreased
significantly. One can conclude that the pre-load
of curved nanobeam is decreased with increase
of initial magnetic potential in accordance with
results of Reference [28].

The influences of initial mechanical loads on
the natural frequencies of three-layered curved
nanobeam are presented in Table 3. One can
conclude that increase of initial mechanical loads
leads to decrease of stiffness and consequently
decrease of natural frequencies.

In continuation, the influence of small scale
parameter and two parameters of Pasternak’s
foundation is studied on the natural frequencies of
three-layered curved nanobeam. The influence of
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Table 1: Variation of 1%, 2" and 3" natural frequencies of three-layered curved nanobeam subjected to initial electric potential ‘P,

Y w4 (1st mode) w,(2nd mode) w3(3rd mode)
0 675.59 1086.58 1411.91
0.1 678.72 1094.61 1424.63
0.2 681.84 1102.59 1437.24
0.3 684.95 1110.51 1449.73

Table 2: Variation of 1%, 2" and 3" natural frequencies of three-layered curved nanobeam subjected to initial electric potential ¥.

b, w4 (1st mode) w,(2nd mode) w3(3rd mode)

0 675.59 1086.58 1411.91
0.001 671.42 1075.89 1394.96
0.002 667.24 1065.09 1377.80
0.003 663.02 1054.18 1360.42

Table 3: Variation of 1%, 2" and 3" natural frequencies of three-layered curved nanobeam subjected to initial mechanical loads N,.

Ny w4 (1st mode) w,(2nd mode) w3(3rd mode)
0 675.59 1086.58 1411.91
0.01 662.99 1054.08 1360.27
0.02 662.95 1053.99 1360.12
0.03 662.91 1053.90 1359.97

Table 4: Variation of 1, 2" and 3 natural frequencies of three-layered curved nanobeam in terms of nonlocal parameter &.

& w4 (1st mode) 0, (2nd mode) w3(3rd mode)
Onm 683.87 1138.93 1560.83
Inm 681.77 1125.14 1519.23
2nm 675.59 1086.58 1411.91
3nm 665.64 1030.27 1274.56

Table 5: Variation f 1%, 2" and 3" natural frequencies of three-layered curved nanobeam in terms spring parameter of foundation K.

K, w4 (Ist mode) w,(2nd mode) w3(3rd mode)

0 681.77 1125.14 1519.23
1E+9 696.10 1134.81 1526.54
1.1E9 697.52 1135.77 1527.26
1.20E9 698.93 1136.73 1527.99

Table 6: Variation f 1%, 2" and 3 natural frequencies of three-layered curved nanobeam in terms shear parameter of foundation K.

K, w4 (1st mode) w,(2nd mode) w3(3rd mode)

0 681.77 1125.14 1519.23
1E-7 690.92 1149.57 1560.58
2E-7 699.94 1173.49 1600.87
3E-7 708.84 1196.93 1640.16

nonlocal parameters £ are studied on the natural
frequencies of three-layered curved nanobeam in
Table 4. Table 4 lists variation 1%, 2" and 3 natural
frequencies of three-layered curved nanobeam
in terms of various nonlocal parameters. One can
conclude that with increase of nonlocal parameter,
the stiffness of nano materials is decreased and
consequently the natural frequencies are decreased
[2]. Tables 5, 6 list variation of 1%, 2" and 3" natural
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frequencies of three-layered curved nanobeam
in terms of spring Kand shear K, parameters of
foundation, respectively. It is observed the natural
frequencies are increased with increase of spring
K,and shear K, parameters of foundation. It can be
concluded that with increase of spring and shear
parameters of Pasternak’s foundation, the stiffness
of structure is increased and then the natural
frequencies are increased significantly.
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To study the influence of thickness of core and
piezoelectric on the natural frequencies of three-
layered curved nanobeam, the non-dimensional
core thickness to piezoelectric thickness ratio he/hp
is employed for case the total thickness is assumed
fixed (he+2hp=Const). Shown in Fig. 2 is variation of
1%, 2" and 3" natural frequencies of three-layered
curved nanobeam in terms of core thickness to
piezoelectric thickness ratioh"/hp . The numerical
results show that with increase of this parameter

he/h,,, the natural frequencies are increased
significantly. It is concluded that with increashe of
core thickness to piezoelectric thickness ratio "/h,,
, the portion of core is increased rather than the
portion of core in bending stiffness of nanobeam
that leads to increase of natural frequencies.
Shown in Fig. 3 is variation of 1%, 2™ and 3™
natural frequencies of three-layered curved
nanobeam in terms of various opening angles. The

1900 -
@ i
1400 -
m -
—
|
400 T
5 10

Fig. 2: variation of 1%, 2" and 3" natural frequencies of three-layered curved
nanobeam in terms of core thickness to piezoelectric thickness ratio h/ hp.
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Fig. 3: variation of 1%, 2" and 3" natural frequencies of three-layered curved
nanobeam in terms of various opening angles 6.
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numerical results show interesting behavior for
fundamental and higher-order natural frequencies.
It is concluded that the fundamental natural
frequencies are decreased with increase of opening
angle while the 2™ and 3 natural frequencies are
increased with increase of opening angle.

CONCLUSIONS

Magneto-electro-elastic vibration characteristics
of a three-layered curved nanobeam resting on
Pasternak’s foundation was studied in this paper.
Thickness stretching effect was included in the
governing equations of motion based on shear
and normal deformation theory. The shear and
normal deformation theory used a sinusoidal
distribution of shear stress across the thickness
direction. Size dependency was accounted based
on Eringen’s nonlocal elasticity theory. The
governing equations of motion were derived based
on Hamilton’s principle. The analytical method
was presented parametrically based on Navier’s
method for simply supported curved nanobeam.
The numerical results were presented to show the
influence of nonlocal parameter, opening angle,
the core thickness to piezoelectric thickness ratio
on the vibration characteristics of three-layered
curved nanobeam. The numerical results present
some important conclusions as follows:

- The three-layered curved nanobeam was

{Al' AZ‘ A3‘ A4I A13I A14‘ AlS‘ A23' A24' AZS‘ AZGI A35' A36}

n T
Zhy

he T
2

h z 1 z Z\% z 1 1 z

o [ Chons O AOR AON € It AR AR AGTAORT A
he r
2

h z 1 z A4 1 1 z
ff% A ER AR AR G & I AO R AO R AOT AR )

(0,9, (D (),
T T

subjected to initial mechanical, electrical and
magnetic loads. The numerical results indicate
that these initial loads can strongly affect the
vibration characteristics of curved nanobeam.
One can conclude that the natural frequencies are
increased with increase of initial electric potential
Y, In addition, increase of initial mechanical loads
N, and magnetic potential ¢, leads to decrease
of natural frequencies of three-layered curved
nanobeam.

- The nonlocal parameter £ based on Eringen’s
nonlocal elasticity theory leads to change of
natural frequencies of curved nanobeam. One
can conclude that increase of nonlocal parameter
decreases the stiffness of nanobeam and decrease
of natural frequencies.

- The results were presented in terms of
geometric parameters such opening angle and
the core thickness to piezoelectric thickness
ratio. The numerical results indicate that the
fundamental natural frequencies are decreased
with increase of opening angle while the 2™
and 3" natural frequencies are increased with
increase of opening angle. In addition, increase
of the core thickness to piezoelectric thickness
ratio leads to increase of natural frequencies due
to increase of stiffness.
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