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Abstract
Buckling analysis of a functionally graded (FG) nanobeam resting on two-parameter elastic foundation is 
presented based on third-order shear deformation beam theory (TOSDBT). The in-plane displacement of 
TOSDBT has parabolic variation through the beam thickness. Also, TOSDBT accounts for shear deformation 
effect and verifies stress-free boundary conditions on upper and lower faces of FG nanobeam. The two-
parameter elastic foundation model including linear Winkler's springs along with Pasternak's shear layer is 
in contact with the beam in deformation. Material properties of FG nanobeam are supposed to vary gradually 
along the thickness according to both power-law and Mori–Tanaka laws. Small-scale effect of Eringen's 
nonlocal elasticity theory has been considered. Nonlocal equilibrium equations are obtained based on the 
minimum potential energy principle and solved analytically. The accuracy of current method is examined 
by comparing current results with the available ones in literature. Effects of foundation parameters, gradient 
index, nonlocal parameter and slenderness ratio on buckling behavior of FG nanobeams are examined.

Keywords: Buckling; Elastic Foundation; Functionally Graded (FG); Nanobeam; Nonlocal Elasticity; 
                    Third-Order Theory.
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INTRODUCTION
Developments in materials engineering led 

to the microscopically inhomogeneous spatial 
composite materials named functionally graded 
materials (FGMs) which provide huge potential 
applications for various systems and devices, such 
as aerospace, aircraft, automobile and defense 
structures and the electronic devices. According to 
the fact that FGMs have been placed in category 
of composite materials, volume fractions of two 
or more material constituents such as a pair of 
ceramic–metal are supposed to change smoothly 
and continuously throughout the gradient 
directions. FGMs are fabricated to take advantage 
of desirable features of its constituent phases, 
for example, in a thermal protection system, the 

ceramic constituents are capable to withstand 
extreme temperature environments due to their 
better thermal resistance characteristics, while the 
metal constituents provide stronger mechanical 
performance and diminishes the possibility of 
catastrophic fracture. Hence, by presenting novel 
mechanical properties, FGMs have gained their 
applicability in many engineering fields, such as 
biomedical, nuclear, and mechanical engineering.

In addition, fast growing progress in the 
application of structural elements such as beams, 
shells and plates with micro/nano length-scale 
in micro (MEMS) or nano (NEMS) electro-
mechanical systems, due to their outstanding 
chemical, mechanical, and electrical properties, 
led to a provocation in modelling of micro/nano 
scale structures. In such applications, the size-
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effect has a major role on dynamic response of 
material. After invention of carbon nanotubes by 
Iijima [1], nanoscale engineering materials have 
exposed to considerable attention in modern 
science and technology. These structures possess 
extraordinary mechanical, thermal, electrical 
and chemical performances that are superior to 
conventional structural materials. Therefore, the 
analysis of nanostructures attracts great attention 
by investigators based on molecular dynamics 
(MD) and continuum mechanics. The problem 
of classical theory in analysis of nanostructures 
is that classical continuum mechanics theory 
does not take care with size-effects in micro- or 
nano-scale structures. The classical continuum 
mechanics overpredicts the behaviors of micro-/
nano-structures. Another way to capture size-
effects is to rely on MD simulations that considered 
as a powerful and accurate implement to study of 
structural components at nanoscale. But even the 
MD simulation at nanoscale is computationally 
exorbitant for modeling nanostructures with large 
numbers of atoms. So, a conventional form of 
continuum mechanics that can capture small-scale 
effect is required. Eringen’s nonlocal continuum 
theory [2-4] is considered that includes small-
scale effects with good accuracy to model micro/
nano scale devices and systems. Nonlocal elasticity 
theory assumes that stress at a reference point is 
a function of strains at all neighbor points of solid. 
Hence, this theory could consider effects of small-
scales.

For proper design of nanostructures, it is very 
important to take all essential characteristics of 
their mechanical behaviors at this submicron size. 
To achieve this goal, based on nonlocal constitutive 
equation of Eringen, many studies have been 
conducted attempting to develop nonlocal beam 
theories for predicting mechanical behavior 
of nanobeams. The potential of application of 
nonlocal Euler–Bernoulli beam theory (EBT) to 
materials in micro- and nano-scale has been 
presented by Peddieson et al. [5] as the first 
researcher to perform nonlocal theory to nano 
structures. Then, nonlocal elasticity theory gained 
considerable attention among nanotechnology 
society and utilization of this theory is extended 
in various mechanical analyses. Reddy [6] 
presented different available beam theories, 
containing EBT, Timoshenko’s beam theory 
(TBT), Reddy’s, and Levinson’s beam theories 
through nonlocal differential relations of Eringen. 

Wang and Liew [7] investigated static response 
of micro- and nano-scale structures based on 
nonlocal continuum mechanics using EBT and TBT. 
Aydogdu [8] employed nonlocal beam theory for 
bending, buckling, and vibration of nanobeams 
based on various beam theories. Phadikar and 
Pradhan [9] used the finite element method and 
Eringen’s theory to discuss bending, vibration, and 
buckling of beams and Kirchhoff’s plates. Civalek 
et al. [10] performed formulation of governing 
equations of nanobeams to discuss bending of 
cantilever microtubules based on differential 
quadrature method. Also, Civalek and Demir [11] 
proposed a nonlocal EBT to analyze the bending of 
microtubules. Thai [12] employed nonlocal higher-
order beam model to discuss mechanical behavior 
of nanobeams. Zenkour and his colleagues [13-
22] presented the nonlocal Eringen’s theory for 
static and dynamic responses of FG and composite 
nanobeams.

FG nanostructures are extensively used in 
MEMS/NEMS due to rapid developments in 
nanotechnology. Ke and Wang [23] employed 
small-scale effects on dynamic stability of FG 
microbeams based on TBT. Recently, Eltaher et 
al. [24] presented static and stability behaviors 
of FG nanobeams due to nonlocal elasticity 
theory. Şimşek and Yurtcu [25] performed 
analytically bending and buckling of FG nanobeam 
using nonlocal TBT and EBT. Ebrahimi et al. 
[26, 27] discussed applicability of differential 
transformation method in deducing of vibrational 
characteristics of FG size-dependent nanobeams. 
Also, Ebrahimi and Salari [28] investigated a semi-
analytical method for vibrational and buckling 
behavior of FG nanobeams. Niknam and Aghdam 
[29] also presented natural vibration and buckling 
response of nonlocal FG beams resting on two-
parameter elastic foundation.

Thus, a comprehensive survey in literature 
reveals that buckling response of FG nanobeams 
especially for those on elastic foundations are very 
limited. Various kinds of elastic foundation models 
for the sake of describing the interactions of the 
beam and foundation have proposed by scientists. 
Winkler or one-parameter elastic foundation 
is known as the simplest model which regards 
the foundation as a series of separated linear 
elastic springs without coupling effects between 
each other. The defect of Winkler’s parameter 
is the behavioral inconsistency associated to 
discontinuous deflections on interacted surface 
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area of the beam. Pasternak [30] later introduced 
an incompressible vertical element as a shear 
layer which is physically realistic representation of 
elastic medium and can consider transverse shear 
stresses due to interaction of shear deformation 
of surrounding elastic medium. Thus, a more 
realistic and generalized representation of elastic 
foundation is expected through a two-parameter 
foundation model.

Reddy’s beam theory [6] relaxes the limitation 
on the warping of the cross sections and allows 
cubic variations in the longitudinal direction of the 
beam, so it can produce adequate accuracy when 
applying for beam analysis. However, a few studies 
have been made to present mechanical behavior 
of FG micro/nanobeams by using higher-order 
and sinusoidal (Touratier [31]) beam theories. 
Rahmani and Jandaghian [32] employed buckling 
response of FG nanobeams based on a nonlocal 
TOSDBT. Sahmani et al. [33] employed free 
vibration of FG nanobeams around postbuckling 
domain incorporating effects of surface free 
energy. Şimşek and Reddy [34] presented buckling 
of FG microbeam resting on two-parameter 
Pasternak’s foundation using modified couple 
stress and unified higher-order beam theories. 
Zhang et al. [35] developed a size-dependent FG 
beam resting on two-parameter foundation based 
on an improved TOSDBT and provided analytical 
solutions for bending, buckling and free vibration 
problems. Microstructure buckling analysis of FG 
third-order microbeams in thermal environment 
has been performed via modified strain gradient 
theory by Sahmani and Ansari [36]. It is to be 
noted until now that a work analyzing buckling 
behavior of embedded FG nanobeams using the 
TOSDBT has not been yet presented.

In the current article, the non-classical TOSDBT 
is developed for buckling of FG nanobeam 

embedded on elastic foundations. Material 
properties of FG nanobeam will be continuously 
changed along the beam thickness according to 
two kinds of micromechanics models, namely, 
power-law and Mori–Tanaka models. By using the 
minimum potential energy principle, equilibrium 
equations are obtained and Navier-type solution 
is used to solve them. The obtained results 
based on TOSDBT are compared with those 
predicted in previously published works to verify 
the accuracy of the current solution. Numerical 
results are reported to discuss effects of gradient 
index, nonlocality and foundation parameters on 
buckling response of FG nanobeams.

MATERIALS AND METHODS
Power-law and Mori-Tanaka FGM beam models

The FG nanobeam (shown in Fig. 1) is graded 
according to two models. Firstly, the power-law 
(PL) model for FGMs can be represented as:

,     1,f c c m m c mP PV P V V V= + + =                                (1)

in which ( )fP z  is the effective material property 
of the FG beam, subscripts m  and c  represent 
metal and ceramic, respectively, mV  and cV  
represent volume fractions of metal and ceramic, 
respectively. The effective material properties 
such as Young’s modulus and Poisson’s ratio of FG 
nanobeam are expressed as:

( ) ( )

( ) ( )

1 ,
2

1 ,
2

p
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p
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zE z E E E
h

zz
h
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 = − + + 
 

 = − + + 
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	          (2)

in which p  represents power-law exponent 
that determines material distribution through the 
nanobeam thickness.

 
Fig. 1. Geometry and coordinates of FG nanobeam resting on elastic foundation. 

   

Fig. 1. Geometry and coordinates of FG nanobeam resting on elastic foundation.
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Secondly, Mori-Tanaka (MT) homogenization 
technique is also utilized to model effective 
material properties of the current FG nanobeam. 
According to MT the effective local bulk modulus 

eK  and shear modulus eµ  can be represented as 
(Şimşek and Reddy [34]):

( ) ( )
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Therefore from Eq. (3), based on MT scheme, 
Young’s modulus and Poisson’s ratio can be 
represented by:

( ) ( )9 3 2,     .
3 6 2

e e e e

e e e e

K KE z z
K K

µ µν
µ µ

−
= =

+ +
	           (4)

The shear modulus ( )G z  of FG nanobeam is 
defined by:

( ) ( )
( )

.
2 1

E z
G z

zν
=

 + 
	           (5)

Kinematic relations
The displacement field of TOSDBT at any point 

of nanobeam is given by

( ) ( ) ( )

( ) ( )
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	          (6)

in which 2
4

3h
α = , u and w represent longitudinal 

and transverse displacements, ϕ  represents rotation 
of cross section at each point of neutral axis. Cauchy’s 
relations of Reddy’s beam model are given by

( ) ( ) ( ) ( ) ( )0 1 3 0 23 2,    .xx xx xx xx xz xz xzz z zε ε ε ε γ γ γ= + + = + 	         (7)
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and 2
4

h
β = .

By using the extremum condition of the 

minimum potential energy principle in the form

( ) 0.U Vδ + =  	          (9)

Here U  denotes strain energy and V  denotes 
work done by external forces. The virtual strain 
energy is represented by:
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Using Eq. (7) into Eq. (10) gives
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(13)

in which M M Pα= − , Q Q Rβ= − ,   
represents applied axial compressive load, q  and 
f  are transverse and axial distributed loadings 
and Wk  and Pk  are linear and shear parameters 
of elastic foundation.

By using Eqs. (11) and (13) into Eq. (9) and 
setting coefficients of uδ , wδ  and δϕ  to zero, 
the following Euler–Lagrange equations may be 
represented as:

2 2 2

2 2 2

0,     0,

0.W P

N Mf Q
x x
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α

∂ ∂
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
	(14)

Nonlocal elasticity model for FG nanobeam
According to Eringen’s nonlocal elasticity model 

(Eringen and Edelen [2]), the stresses ijσ  at each 
point x  in the solid may be represented by

𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥) = � 𝜓𝜓(|𝑥𝑥 − 𝑥𝑥′ |, 𝜏𝜏)𝑡𝑡𝑖𝑖𝑖𝑖 (𝑥𝑥′)dv(𝑥𝑥′)
v

, 
	   

(15)

in which ( )ijt x ′  represent components available 
in local stress tensor at point x  which are 
associated to strain tensor components klε  as
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.ij ijkl klt C ε= 	        (16)

In Eq. (15), the size that is related to nonlocal 
kernel ( ),x xψ τ− ′  and x x− ′  is Euclidean 
distance and 0 /e a lτ =  is a constant in which a  is 
internal length, l  is a characteristic external length, 
and 0e  is experimentally estimated. The integral 
constitutive equations appeared in Eq. (16) in an 
equivalent differential form is represented by:

( )2 2
01 ,kl kle a tσ − ∇ =  	        (17)

in which 2∇  represents Laplacian operator. 
For a 1D material, the constitutive relations of 
nonlocal theory may be represented by:

( )

( )

2
2

0 2

2
2

0 2

,

,

xx
xx xx

xz
xz xz

e a E
x

e a G
x

σσ ε

σσ γ

∂
− =

∂
∂

− =
∂ 	        

(18)

where σ  and ε  represent nonlocal stress and 
strain, respectively. For a nonlocal FG beam, Eqs. 
(18) is expressed as
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in which ( )2
0e aµ = . Integrating Eqs. (19) over 

cross-section area, we obtain
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where the cross-sectional rigidities are given by:
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The nonlocal normal force is obtained by using 
second derivative of N  from Eq. (14)1 into Eq. (20) 
as

2

2 .xx xx xx
u w fN A K E
x x x x

ϕ α µ∂ ∂ ∂ ∂
= + − −

∂ ∂ ∂ ∂
	          (27)

Eliminating Q  from Eqs. (14)2 and (14)3 yields
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2 2 2 2 .W P
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α∂ ∂ ∂ ∂
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 	    (28)

Also, the nonlocal bending moment can be 
derived by using the above equation into Eqs. (21) 
and (22) as follows:

2 2 2 2
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Where

,     ,     .xx xx xx xx xx xx xx xx xxK B E I D F J F Hα α α= − = − = − (30)

The substitution of second derivative of the 
nonlocal shear force Q  from Eq. (14)3 into Eq. (23) 
with the aid of Eq. (24) yields Q  in the form

3 3 3
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Where
* ,     ,     .xz xz xz xz xz xz xz xz xzA A D A A D D D Fβ β β= − = − = −  (32)

using M  and Q  from Eqs. (29) and (31) and the 
identity that given from Eq. (22) to get
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The nonlocal governing equations of FG 
nanobeam in terms of displacement can be 
obtained by substituting for N , M  and Q  from 
Eqs. (27), (29) and (31), respectively, and using Eq. 
(33) into Eqs. (14) as follows:
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RESULTS AND DISCUSSIONS
The displacement field that satisfy the simply-

supported boundary conditions is represented as
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in which nU , nW  and nΦ  denote unknown 
Fourier’s coefficients to be determined for each n
. It is to be noted that the conditions for simply-
supported beam are expressed as
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(38)

Using Eqs. (37) into Eqs. (34)-(36), respectively, 
leads to

2 2 3

0,xx n xx n xx n
n n nA U K E W
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π π πα     − − Φ + =     
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(39)
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The above equations may be summarized as:

[𝐾𝐾]{∆} = {0}, 	           (42)

where {∆} = {𝑈𝑈𝑛𝑛 ,𝑊𝑊𝑛𝑛 ,𝛷𝛷𝑛𝑛}𝑇𝑇   and [ ]K  is stiffness 
matrix. By putting this polynomial to zero, we can 
find buckling loads.

Here, effects of FG distribution, nonlocality 
effect and mode number on natural frequencies 
of FG nanobeam are presented. The FG nanobeam 
is a combination of steel and alumina (Al2O3) 
where their properties are reported in Table 1. 
The following dimensions for the beam geometry 
is considered: L  (length) = 104 nm, b  (width) = 103 
nm (Eltaher et al. [37]; Rahmani and Pedram [38]). 
In addition, for better presentation of results the 
following dimensionless quantities are adopted 
(Şimşek and Reddy [34]):
	

2 4 2

,     ,     .cr W w P P
m m m

L L LN K k K k
E I E I E I

= = = (43)

where 3 /12I bh=  represents moment inertia 
of beam’s cross-section. For verification purpose, 
dimensionless buckling loads of simply-supported 
FG nanobeam with different nonlocal parameters 
and gradient indexes are compared with results 
reported in Eltaher et al. [37] and Rahmani and 
Jandaghian [32] for nonlocal EBT and nonlocal 
Reddy’s beam theory, respectively. In these work, 
the variation of Poisson’s ratio along the beam 
thickness is not considered and it is fixed to be 
0.3. It can be observed from Table 2 that results 
of nonlocal Reddy’s beam theory are smaller than 
those of nonlocal EBT. This is attributed to the fact 
that Euler–Bernoulli’s beam model is unable to 
capture the influence of shear deformation.

The variation of dimensionless buckling loads 
of FG nanobeam for both PL and MT models 
with different gradient indexes ( 0, 0.5,1 , 5p = ), 
nonlocal parameters, foundation parameters 
and slenderness ratios are presented in Tables 
3-5. The present results for MT model and PL 
model are referred to as MT-FGM and PL-FGM, 
respectively. It can be noticed from the tables 
that non-dimensional buckling loads predicted 

Table 1. Material properties of FGM constituents. 
 

Properties Steel Alumina (Al2O3) 
 210 GPa 390 GPa 
 0.3 0.3 

 
   

Table 1. Material properties of FGM constituents.
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with respect to PL model are larger than that 
of MT homogenization scheme, related to 
the fact that for a constant gradient index, FG 
nanobeam becomes more flexible based on MT 
homogenization scheme compared to the PL 
model. The obtained results using MT and PL 
models are the same at 0p =  since nanobeam 
is fully ceramic. From this point of view, the 

difference between results of these two models is 
significant when gradient index value is more than 
zero. Considering explanations and according to 
Tables 3-5, it must be noted that, as gradient index 
increases dimensionless buckling load increases 
(constant nonlocal parameter) too. In addition, at 
a fixed gradient index the dimensionless buckling 
load decreases as nonlocal parameter increases. 

Table 2. Comparison of dimensionless buckling load for a S-S FG nanobeam with various gradient indexes without elastic foundation (��� �
20). 
  

  � � �  � � 2  

� 
EBT (Eltaher et 
al. [24]) 

RBT (Rahmani 
and Jandaghian, 
[32]) 

Present 
 EBT (Eltaher 

et al [24]) 
RBT (Rahmani and 
Jandaghian, [32]) Present 

0 8.9843 8.9258 8.925759  8.2431 8.1900 8.190046 
0.1 10.1431 9.7778 9.777865  9.2356 8.9719 8.971916 
0.2 10.2614 10.3898 10.389845  9.7741 9.5334 9.533453 
0.5 11.6760 11.4944 11.494448  10.6585 10.5470 10.547009 
1 12.4581 12.3709 12.370918  12.0652 11.3512 11.351234 
2 13.1254 13.1748 13.174885  12.4757 12.0889 12.088934 
5 13.5711 14.2363 14.236343  13.2140 13.0629 13.062900 
  µ =3    µ =4  

� 
EBT (Eltaher et 
al. [24]) 

RBT (Rahmani 
and Jandaghian, 
[32]) 

Present 
 EBT (Eltaher 

et al. [24]) 
RBT (Rahmani and 
Jandaghian, [32]) Present 

0 7.6149 7.5663 7.566381  7.0765 7.0309 7.030978 
0.1 8.5786 8.2887 8.288712  8.0416 7.7021 7.702196 
0.2 9.3545 8.8074 8.807489  8.3176 8.1842 8.184264 
0.5 9.8093 9.7438 9.743863  9.0585 9.0543 9.054379 
1 10.9776 10.4869 10.486847  9.9816 9.7447 9.744790 
2 11.7415 11.1683 11.168372  10.4649 10.3781 10.378089 
5 12.2786 12.0682 12.068171  11.5231 11.2142 11.214218 

Table 2. Comparison of dimensionless buckling load for a S-S FG nanobeam with various gradient indexes without elastic foundation 
( / 20L h = ).

Table 3. The variation of nondimensional buckling loads of S-S FG nanobeam with various gradient indexes and nonlocal parameters ( , 
). 

 
  Gradient index ( )   

  0   0.5   1   5  
  PL-FGM MT-FGM  PL-FGM MT-FGM  PL-FGM MT-FGM  PL-FGM MT-FGM 

0 0 9.8067 9.8067  12.6289 12.3794  13.5919 13.3665  15.6414 15.4096 
 1 8.92576 8.92576  11.4944 11.2673  12.3709 12.1657  14.2363 14.0254 
 2 8.19005 8.19005  10.5470 10.3386  11.3512 11.1630  13.0629 12.8693 
 3 7.56638 7.56638  9.74386 9.55132  10.4868 10.3129  12.0682 11.8894 
 4 7.03098 7.03098  9.05438 8.87546  9.74479 9.58317  11.2142 11.0481 
             

25 0 12.3397 12.3397  15.1619 14.9124  16.1249 15.8995  18.1744 17.9427 
 1 11.4588 11.4588  14.0275 13.8003  14.9039 14.6988  16.7694 16.5584 
 2 10.7231 10.7231  13.0800 12.8716  13.8843 13.6960  15.5959 15.4024 
 3 10.0994 10.0994  12.2769 12.0844  13.0199 12.8460  14.6012 14.4224 
 4 9.56401 9.56401  11.5874 11.4085  12.2778 12.1162  13.7472 13.5811 
             

50 0 14.8728 14.8728  17.6950 17.4454  18.6579 18.4325  20.7075 20.4757 
 1 13.9918 13.9918  16.5605 16.3334  17.4370 17.2318  19.3024 19.0915 
 2 13.2561 13.2561  15.6131 15.4047  16.4173 16.2290  18.1290 17.9354 
 3 12.6324 12.6324  14.8099 14.6174  15.5529 15.3790  17.1342 16.9554 
 4 12.0970 12.0970  14.1204 13.9415  14.8108 14.6492  16.2803 16.1141 
             

100 0 19.9388 19.9388  22.7610 22.5115  23.7240 23.4986  25.7735 25.5418 
 1 19.0579 19.0579  21.6266 21.3994  22.5030 22.2979  24.3685 24.1575 
 2 18.3222 18.3222  20.6791 20.4707  21.4834 21.2951  23.1950 23.0015 
 3 17.6985 17.6985  19.8760 19.6834  20.6190 20.4450  22.2003 22.0215 
 4 17.1631 17.1631  19.1865 19.0076  19.8769 19.7153  21.3463 21.1802 

 
   

Table 3. The variation of nondimensional buckling loads of S-S FG nanobeam with various gradient indexes and nonlocal parameters 
( 0PK = , / 20L h = ).
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Furthermore, it should be stated that when the 
foundation parameters (Winkler’s and Pasternak’s 
parameter) increase, the non-dimensional buckling 
load increases which indicates the stiffening effect 

of foundation parameters on the FG nanobeam.
The effect of elastic foundation on non-

dimensional buckling load of FG nanobeam with 
varying of gradient index at / 20L h =  is presented 

Table 4. The variation of the nondimensional buckling loads of S-S FG nanobeam with various gradient indexes and nonlocal parameters (�� �5,��� � ��). 
 
�� � Gradient index (�)   

  0   0.5   1   5  
  PL-FGM MT-FGM  PL-FGM MT-FGM  PL-FGM MT-FGM  PL-FGM MT-FGM 

0 0 14.8067 14.8067  17.6289 17.3794  18.5919 18.3665  20.6414 20.4096 
 1 13.9258 13.9258  16.4944 16.2673  17.3709 17.1657  19.2363 19.0254 
 2 13.1900 13.1900  15.5470 15.3386  16.3512 16.1630  18.0629 17.8693 
 3 12.5664 12.5664  14.7439 14.5513  15.4868 15.3129  17.0682 16.8894 
 4 12.0310 12.0310  14.0544 13.8755  14.7448 14.5832  16.2142 16.0481 
             

25 0 17.3397 17.3397  20.1619 19.9124  21.1249 20.8995  23.1744 22.9427 
 1 16.4588 16.4588  19.0275 18.8003  19.9039 19.6988  21.7694 21.5584 
 2 15.7231 15.7231  18.0800 17.8716  18.8843 18.6960  20.5959 20.4024 
 3 15.0994 15.0994  17.2769 17.0844  18.0199 17.8460  19.6012 19.4224 
 4 14.5640 14.564  16.5874 16.4085  17.2778 17.1162  18.7472 18.5811 
             

50 0 19.8728 19.8728  22.6950 22.4454  23.6579 23.4325  25.7075 25.4757 
 1 18.9918 18.9918  21.5605 21.3334  22.4370 22.2318  24.3024 24.0915 
 2 18.2561 18.2561  20.6131 20.4047  21.4173 21.2290  23.129 22.9354 
 3 17.6324 17.6324  19.8099 19.6174  20.5529 20.3790  22.1342 21.9554 
 4 17.0970 17.0970  19.1204 18.9415  19.8108 19.6492  21.2803 21.1141 
             

100 0 24.9388 24.9388  27.7610 27.5115  28.7240 28.4986  30.7735 30.5418 
 1 24.0579 24.0579  26.6266 26.3994  27.5030 27.2979  29.3685 29.1575 
 2 23.3222 23.3222  25.6791 25.4707  26.4834 26.2951  28.1950 28.0015 
 3 22.6985 22.6985  24.8760 24.6834  25.6190 25.4450  27.2003 27.0215 
 4 22.1631 22.1631  24.1865 24.0076  24.8769 24.7153  26.3463 26.1802 

 
   

Table 4. The variation of the nondimensional buckling loads of S-S FG nanobeam with various gradient indexes and nonlocal 
parameters ( 5PK = , / 20L h = ).

Table 5. The variation of dimensionless buckling loads of S-S FG nanobeam with various gradient indexes and nonlocal parameters ( , 
). 

 
  Gradient index ( )   

  0   0.5   1   5  
  PL-FGM MT-FGM  PL-FGM MT-FGM  PL-FGM MT-FGM  PL-FGM MT-FGM 
0 0 19.8067 19.8067  22.6289 22.3794  23.5919 23.3665  25.6414 25.4096 
 1 18.9258 18.9258  21.4944 21.2673  22.3709 22.1657  24.2363 24.0254 
 2 18.1900 18.1900  20.5470 20.3386  21.3512 21.1630  23.0629 22.8693 
 3 17.5664 17.5664  19.7439 19.5513  20.4868 20.3129  22.0682 21.8894 
 4 17.0310 17.0310  19.0544 18.8755  19.7448 19.5832  21.2142 21.0481 
             

25 0 22.3397 22.3397  25.1619 24.9124  26.1249 25.8995  28.1744 27.9427 
 1 21.4588 21.4588  24.0275 23.8003  24.9039 24.6988  26.7694 26.5584 
 2 20.7231 20.7231  23.0800 22.8716  23.8843 23.6960  25.5959 25.4024 
 3 20.0994 20.0994  22.2769 22.0844  23.0199 22.8460  24.6012 24.4224 
 4 19.5640 19.5640  21.5874 21.4085  22.2778 22.1162  23.7472 23.5811 
             

50 0 24.8728 24.8728  27.6950 27.4454  28.6579 28.4325  30.7075 30.4757 
 1 23.9918 23.9918  26.5605 26.3334  27.4370 27.2318  29.3024 29.0915 
 2 23.2561 23.2561  25.6131 25.4047  26.4173 26.2290  28.1290 27.9354 
 3 22.6324 22.6324  24.8099 24.6174  25.5529 25.3790  27.1342 26.9554 
 4 22.0970 22.0970  24.1204 23.9415  24.8108 24.6492  26.2803 26.1141 
             

100 0 29.9388 29.9388  32.7610 32.5115  33.7240 33.4986  35.7735 35.5418 
 1 29.0579 29.0579  31.6266 31.3994  32.5030 32.2979  34.3685 34.1575 
 2 28.3222 28.3222  30.6791 30.4707  31.4834 31.2951  33.1950 33.0015 
 3 27.6985 27.6985  29.8760 29.6834  30.6190 30.4450  32.2003 32.0215 
 4 27.1631 27.1631  29.1865 29.0076  29.8769 29.7153  31.3463 31.1802 

 
 

Table 5. The variation of dimensionless buckling loads of S-S FG nanobeam with various gradient indexes and nonlocal parameters (
10PK = , / 20L h = ).
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in Fig. 2(a, b) and the variation of non-dimensional 
buckling load with and without elastic foundation 
based on both PL and MT models are compared. 
It is seen from the results of this figure that the 
dimensionless buckling loads of FG nanobeam 
embedded in elastic medium are larger than that 
of FG nanobeam without elastic foundation. This 
is since when the both foundation parameters 
increase the nanobeam becomes stiffer. Also, 
the MT scheme estimates lower values for the 
non-dimensional buckling loads compared to the 
power-law model. The reason is that, MT model 
provides smaller values for Young’s modulus 
than the power-law model and thus leads to a 
more flexible structure. Also, it is noticed from 
this figure that the dimensionless buckling load is 

prominently affected by lower values of gradient 
indexes. Also, increasing nonlocal parameter 
shows a decreasing effect on the dimensionless 
buckling load. So, as a general consequence, the 
presence of nonlocality and elastic foundation 
softens and stiffens the structure, respectively.

Fig. 3(a, b) shows variation of dimensionless 
buckling load of FG nanobeam with respect 
to slenderness ratio (at 25WK =  and 5PK = ) 
 for various values of gradient indexes used in 
MT model as well as PL model. It is seen that, 
dimensionless buckling load increases with 
increase in slenderness ratio. But this observation 
is accurate when slenderness ratio is in the range 

/ 20L h < . Therefore, it can be deduced that effect 
of slenderness ratio on dimensionless buckling 

Fig. 2. The effect of presence of elastic foundation on dimensionless buckling load of FG 
nanobeam based on power-law and Mori-Tanaka models with gradient index when ; 
(a) 0  , (b) 2  . 
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Fig. 2. The effect of presence of elastic foundation on dimensionless buckling load of FG nanobeam based on power-law and Mori-
Tanaka models with gradient index when / 20L h = ; (a) 0µ = , (b) 2µ = .

Fig. 3. The comparison of dimensionless buckling load versus slenderness ratio for different 
gradient indexes when , ; (a) classical beam theory 0  . (b) Nonlocal beam 
theory 2  . 
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Fig. 3. The comparison of dimensionless buckling load versus slenderness ratio for different gradient indexes when 5PK = , 
25WK = ; (a) classical beam theory 0µ = . (b) Nonlocal beam theory 2µ = .
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load is approximately diminishes for values greater 
than / 20L h > .

The softening effect of nonlocal parameter 
on the dimensionless buckling load of S-S FG 
nanobeams for various gradient indexes at 

/ 20L h =  with and without elastic foundation is 
shown in Fig. 4(a, b), so as nonlocal parameter 

growths, dimensionless buckling load reduces for 
all gradient indexes.

The variation of dimensionless buckling load 
of S-S FG nanobeam with Winkler’s parameter 
for different nonlocal parameters and gradient 
indexes is presented in Fig 5(a-d). In this figure, the 
MT model is adopted. It is seen that with increase 

Fig. 4. The variation of dimensionless buckling load of FG nanobeam with nonlocal parameter 
and gradient index at ; (a) , (b) , . 
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Fig. 4. The variation of dimensionless buckling load of FG nanobeam with nonlocal parameter and gradient index at / 20L h = ; (a)
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Fig. 5 (a, b, c, d). The variation of dimensionless buckling load of FG nanobeam with Winkler's 
parameter and gradient index for different nonlocal parameters at  and . 
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of Winkler’s parameter dimensionless buckling 
load increases linearly for all values of gradient 
index. Also, it is observed that increasing gradient 
index yields the increment in dimensionless 
buckling load at constant Winkler’s and nonlocal 
parameters.

The variation of the dimensionless buckling 
load of S-S FG nanobeam with respect to 
Pasternak’s parameter PK  and different gradient 
indexes and nonlocal parameters is presented in 
Fig. 6(a-d). It is observed that with increase of 
Pasternak’s parameter the dimensionless buckling 
load increases with a linear manner for all values 
of gradient index and nonlocal parameter. Also, 
it is seen that increasing gradient index results 
in increase of dimensionless buckling load at 
constant Pasternak’s parameter. Comparing 
this figure with Fig. 5(a-d) specifies that the 
influence of Pasternak’s parameter ( PK ) on non-
dimensional buckling load is more significant than 
that of Winkler’s parameter ( WK ).

Fig. 6 (a, b, c, d). The variation of dimensionless buckling load of FG nanobeam with 
Pasternak's parameter and gradient index for different nonlocal parameters at  and 
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Fig. 6 (a, b, c, d). The variation of dimensionless buckling load of FG nanobeam with Pasternak’s parameter and gradient index for 
different nonlocal parameters at / 20L h =  and 25WK = .

CONCLUSIONS
In the present work, buckling analysis of size-

dependent FG nanobeams embedded in two-
parameter elastic foundation is performed based 
on nonlocal TOSDBT in conjunction with Navier 
analytical method. Two types of mathematical 
models, namely, power law and Mori-Tanaka 
models are considered. The nonlocal governing 
differential equations in elastic medium are 
derived by implementing the minimum potential 
energy principle and using nonlocal constitutive 
equations of Eringen. Accuracy of the results is 
examined using available date in the literature. 
The effects of small scale parameter, material 
graduation, foundation parameters and 
slenderness ratio on buckling behavior of FG 
nanobeams are investigated. It is observed that, 
with an increase in Winkler’s or Pasternak’s 
parameter, the beam becomes more rigid and the 
dimensionless buckling load of FG nanobeams 
increases. Also, the presence of nonlocality has 
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a notable decreasing effect on the dimensionless 
buckling load of FG nanobeams, which shows the 
prominence of the nonlocal effect. So, it should 
be noted that reasonable selection of the value 
of the nonlocal parameter is also vital to ensure 
the accuracy of the nonlocal beam models. It must 
be pointed out that the PL and MT indexes have a 
remarkable effect on the buckling responses of FG 
nanobeam. Moreover, often the difference of the 
buckling loads between PL and MT models is very 
small, specifically at the range of lower gradient 
indexes. Thus, both material models reveal that 
with the increase of gradient index the buckling 
loads increase.
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