تعداد نشریات | 418 |
تعداد شمارهها | 10,002 |
تعداد مقالات | 83,581 |
تعداد مشاهده مقاله | 78,082,880 |
تعداد دریافت فایل اصل مقاله | 55,017,696 |
مقایسه گشتاوری مدلهای توزیع حدی و تفاوت نسبت شکست الگوهای متفاوت زمانی شاخص کل بورس تهران | ||
مهندسی مالی و مدیریت اوراق بهادار | ||
مقاله 11، دوره 11، شماره 43، تیر 1399، صفحه 245-270 اصل مقاله (1.02 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
علی رضاییان1؛ حمیدرضا وکیلی فرد* 2؛ مریم خلیلی عراقی3 | ||
1گروه مدیریت مالی، دانشکده مدیریت و اقتصاد، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
2گروه حسابداری، دانشکده مدیرت و اقتصاد، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. | ||
3گروه مدیریت بازرگانی، دانشکده مدیریت و اقتصاد، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. | ||
چکیده | ||
چکیده ارزیابی ریسک حدی و استفاده از مدلهای کارآتر برآورد ریسک حدی در دنیای متغیر مالی امروز از اهمیت مضاعفی برخوردار است. در مقاله حاضر با استفاده از روش نوین شاخص گشتاوری ال–مومنت برای مقادیر حدی مثبت و منفی شاخص کل بورس تهران (رویکرد ماکزیمم بلوکها) و برآورد ریسک حدی شرطی در الگوهای متفاوت زمانی، نسبت به انتخاب مدل آماری حدی مناسب و الگوی مطلوب زمانی برای برآورد شاخص ریسک حدی ثابت و متغیر در زمان اقدام گردید. نتایج بررسی گشتاوری مدلهای مهم توزیع حدی، پس از براورد پارامترهای مدلهای مقادیر حدی هم در سریهای حدی مثبت (حداکثر) و هم منفی (حداقل)، نشان داد که مدل مطلوب انطباقی با لگاریتم بازده حدی بورس تهران، غالباً مدل GEV و گاهاً مدل GL بوده و در بین الگوهای متفاوت زمانی نیز، الگوی روزانه و هفتگی در سطح اطمینان 90% دارای خطای برآوردی کمتری میباشند. واژههای کلیدی: مدل سازی گشتاوری، مدلهای ریسک حدی، نسبت خطا، ماکزیمم بلوکها. | ||
کلیدواژهها | ||
واژههای کلیدی: مدل سازی گشتاوری؛ مدلهای ریسک حدی؛ نسبت خطا؛ ماکزیمم بلوکها | ||
مراجع | ||
راعی، رضا و احمد بنیزاده. 1392. آزمون توزیع بازده سهام در بورس اوراق بهادار تهران بین سالهای 90-1380. فصلنامه راهبرد مدیریت مالی. سال اول، شماره 1، 18-1.
رهنمای رودپشتی، فریدون و سید رضا میرغفاری. 1390. ارزیابی عملکرد پورتفوی در بورس اوراق بهادار تهران: کاربرد ارزش در معرض خطر (Value at Risk). مهندسی مالی و مدیریت اوراق بهادار، دوره 2 شماره 8، 76-51.
زمانی، شیوا، اسلامی بیدگلی، سعید و معین کاظمی. 1392. محاسبه ارزش در معرض ریسک شاخص بورس اوراق بهادار تهران با استفاده از نظریه ارزش فرین. فصلنامه بورس اوراق بهادار، سال ششم، شماره 21، 152-136.
سجاد، رسول، هدایتی، شراره و شهره هدایتی. 1393. برآورد ارزش در معرض خطر با استفاده از نظریه ارزش فرین در بورس اوراق بهادار تهران. دانش سرمایهگذاری. دوره 3، شماره 9.
فلاحپور، سعید و ثمینه فیضاله. 1395. انتخاب پورتفوی سهام با استفاده از وابستگی دنباله پائینی و تئوری مقدار حدی. دانش مالی تحلیل اوراق بهادار، سال 4 شماره 30، 54-33.
فلاحپور، سعید و مهدی یاراحمدی. 1391. برآورد ارزش در معرض ریسک با استفاده از تئوری مقدار حدی در بورس اوراق بهادار تهران. مهندسی مالی و مدیریت اوراق بهادار، دوره 4 شماره 13، 122-103.
فلاح شمس، میرفیض و سمیرا غضنفری. 1395. بررسی ریسک نامطلوب (مقدار ارزش حدی) و بازده در بورس اوراق بهادار تهران با رویکرد تئوری ارزش حدی. مهندسی مالی و مدیریت اوراق بهادار (مدیریت پورتفوی). دوره 7 شماره 27، 154-137.
فلاح طلب، حسین و محمدرضا عزیزی. 1393. کاربرد تئوری مقادیر فرین در پیشبینی ارزش در معرض ریسک. دانش سرمایهگذاری، دوره 3 شماره 12، 180-159.
Assaf, A, (2009). Extreme observations and risk assessment in the equity markets of MENA region: tail measures and Value-at-Risk. Journal of international review of financial analysis. 18 (3), 109-116.
Christoffersen P, Errunza V, Jacobs K, Longlois H (2012). Is the potential for international diversification disappearing? A dynamic copula approach. The Review of financial studies. 25(12), 3711-3751.
Dominicy Y, Ilmonen P, Veredas D. (2015). Multivariate Hill estimators. International statistical Review banner. 85(1), 108-142.
Gency, Ramazan, and Faruk Selcuk (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets Ramazan. International Journal of Forecasting 21, 287-303.
Gencay, R., Selcuk, F., (2004). Extreme Value Theory and Value-at-risk: relative performance in emerging markets. International Journal of Forecasting.20 (2), 284-303.
Gettinby, G., Sinclair, C., Power, D., Brown, R., (2006). An analysis of the distribution of extreme share returns in the UK from 1952 to 2000. Journal of Business Finance and Accounting. 31(5-6), 607-646.
Gilli, Manfred and Evis Kellezi. 2006. An Application of Extreme Value Theory for Measuring Financial Risk. Computational Economics, vol. 27, issue 2, 207-228.
Gumbel, E.J. (1954). Statistical theory of extreme values and some practical applications. Applied Mathematics series. 33 (1st ed.). U.S. Department of Commerce, National Bureau of Standards.
Hasan, H. Ahmad Radi, N. F., & Kassim, S. (2012). Modeling the distribution of extreme share return in Malaysia using generalized extreme value (GEV) distribution. The 5th international conference on research and education in mathematics. Volume 1450, 82-89 (2012); doi: 10.1063/1.4724321.
Hosking, J. R., (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of Royal statistical society. 52(1), 105-124.
Hussain, Saiful I. 2016. Modelling Extreme Returns in Chinese Stock Market Using Extreme Value Theory and Copula Approach. PhD Thesis of Actuarial Science. College of Business, Universiti Kebangsaan Malaysia.
Karmakar, M., & Shukla, G, K. (2015). Managing extreme risk in some major stock markets: An extreme values approach. International Review of Economics & Finance, 35, 1-25.
Kelvin, A.K, Mung’atu, J.K., (2016). Extreme Values Modelling of Nairobi Securities Exchange Index. American Journal of Theoretical and Applied Statistics. 5(4), 234-241.
Kittia karasakun, J. & Tse, Y. (2011). Modeling the Fat Tails in Asian Stock Markets. International review of economics and finance, 20(3), 430-440.
Longin, F. M., (1996). The asymptotic distribution of extreme stock market returns. Journal of Business. 69(3), 383-408.
Maghyerch, A. & Al-Zoubi, H. 2006. Value-at-Risk under Extreme Values: The Relative Performance in MENA Emerging Stock Markets. International journal of managerial finance. 154-172.
Matu, S., Balogh, P., Moldovan, D., (2011). The Efficiency of at Risk models on Central and Eastern European stock markets. International journal of mathematics and computers in Simulation. Issue 2, Vol. 5, 110-117.
McNeil A, Frey R. (2000). Estimation of Tail-Related Risk Measures for heteroscedastic financial time series: an extreme value Approach. Journal of Empirical finance. 7(3-4), 271-300.
Minkah, R. 2016. An application of extreme value theory to the management of a hydroelectric dam. Springerplus. 5: 96.
Nortey, Ezekiel N. N., Kwabena Asare, and Felix Okoe Mettle (2015). Extreme value modelling of Ghana stock exchange index. Springerplus 4: 696.
Saiful, IH, Li, S, (2015). Modeling the distribution of extreme returns in the Chinese stock market. Journal of international Financial Markets, institutions and money. 34(2015) 263-276.
Singh, A.K., Robert, P. J., (2013). Extreme market risk and extrene Value theory. Mathematics and computers in Simulation, VOL. 94, 310-328.
Soltane, H.B., Karna, A., Bellah, m. (2012). Conditional VaR using GARCH-EVT approach: forecasting Volatility in Tunisian Financial market. Journal of Computational & modelling, VoL2, no. 2, 95-115.
Tasi M, Chen L. (2011). The calculation of capital requirement using extreme value theory. Economic Modelling. 28(1-2), 390-395.
Tolikas, K., Gettinby, G. D., (2009). Modelling the distribution of the extreme share returns in Singapore. Journal of Empirical Finance. 16(2), 254-263.
Velasco, AAF., Lapuz, Dkp (2018). Extreme value modelling for measuring financial risk with application to selected Philippine stocks. A journal of computational mathematics. 7(3), 404.
| ||
آمار تعداد مشاهده مقاله: 358 تعداد دریافت فایل اصل مقاله: 150 |