تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,343,636 |
تعداد دریافت فایل اصل مقاله | 55,385,847 |
Synthesis of ternary Ce2O3/La2O3/Fe3O4 oxides as a potential catalyst for SO2 reduction by CH4 to sulfur | ||
Iranian Journal of Catalysis | ||
مقاله 6، دوره 10، شماره 2، شهریور 2020، صفحه 135-148 اصل مقاله (2.95 M) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Abdol Hossein Khangah1؛ Mohammad Javad Sarraf2؛ Habib Ale Ebrahim3؛ Masoumeh Tabatabaee* 4 | ||
1Department of Chemical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran. | ||
2Department of Chemical and Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran. | ||
3Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran. | ||
4Departments of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran. | ||
چکیده | ||
In this study, ternary mixed metal oxide (Ce2O3/La2O3/Fe3O4) catalysts were synthesized for reduction of SO2 to sulfur by CH4. The response surface method (RSM) was used to optimize the synthesis conditions. The XRD, FESEM, BET, BJH, EDX and NH3-TPD analyses were performed to characterize the synthesized catalysts. The optimum conditions were obtained for an activated catalyst with 8 wt% La, 16 wt% Fe, and calcination temperature of 650°C. The highest surface area was found to be 71.7 m2.g-1. The validation tests proved that the predicted model was well fitted with the experimental data. Furthermore, the SO2 conversions were compared at various temperatures (550-800 °C) and it was found that the highest reactivity was found for optimum Ce2O3/La2O3/Fe3O4 catalyst. The highest SO2 conversion was found to be 93% at 800 °C. The catalytic results showed that optimum ternary Ce2O3/La2O3/Fe3O4 catalyst had a better performance compared to pure cerium oxide. | ||
کلیدواژهها | ||
Ternary Cerium/Lanthanum/Iron oxides؛ Response surface method؛ Catalyst surface area؛ Catalytic activity؛ SO2 reduction | ||
مراجع | ||
[1] J. Sun, L. Li, G. Zhou, X. Wang, L. Zhang, Y. Liu, J. Yang, X. Lü, F. Jiang, Environ. Sci. Technol. 52 (2018) 4754-4762. [2] Q. Liang, J. Li, H. He, T. Yue, L. Tong, J. Environ. Sci. 90 (2020) 253-261. [3] L. Zhao, S. Yang, J. Duan, Q. Liu, Fuel 263 (2020) 116668. [4] W. Zhang, G. Liu, J. Jiang, Y. Tan, Q. Wang, C. Gong, D. Shen, C. Wu, Chemosphere 243 (2020) 125419. [5] A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, M. Mahdavi, Iran. J. Catal. 9 (2019) 27-35. [6] B. Divband, A. Jodaei, M. Khatamian, Iran. J. Catal. 9 (2019) 63-70. [7] T. Feng, P. Zhou, X. Zhao, L. Li, X. Xia, S. Zhang, J. Li, L. Wang, C. Ma, Energy & Fuels 33 (2019) 7491-7499. [8] S. Dianat, Iran. J. Catal. 8 (2018) 121-132. [9] L. Shabani, H. Aliyan, Iranian J. Catal. 6 (2016) 221-228. [10] S. Aghabeygi, R.K. Kojoori, H.V. Azad, Iran. J. Catal. 6 (2016) 275-279. [11] H. Pouretedal, A. Sohrabi, J. Iran. Chem. Soc. 13 (2016) 73-79. [12] M. Barjasteh-Moghaddam, A. Habibi-Yangjeh, J. Iran. Chem. Soc. 8 (2011) S169-S175. [13] N. Assi, P.A. Azar, M.S. Tehrani, S.W. Husain, J. Iran. Chem. Soc. 13 (2016) 1593-1602. [14] T. Feng, P. Zhou, X. Zhao, L. Li, X. Xia, S. Zhang, J. Li, L. Wang, C. Ma, Energy & Fuels 33 (2019) 7491-7499. [15] T. Feng, M. Huo, X. Zhao, T. Wang, X. Xi, C. Ma, Chem. Eng. Res. Des. 121 (2017) 191-199. [16] T. Ge, C. Zuo, J. Zhang, L. Wei, C. Li, Ind. Eng. Chem. Res. 57 (2018) 4170-4179. [17] T. Kane, J. Guerrero-Caballero, A. Löfberg, Appl. Catal. B Environ. 265 (2020) 118566. [18] J. J. Helstrom, G.A. Atwood, Ind. Eng. Chem. Proc. Des. Dev. 17 (1978) 114-117. [19] A. Bobrin, V. Anikeev, A. Yermakova, V. A. Kirillov, React. Kinet. Catal. Lett. 40 (1989) 363-367. [20] J. Sarlis, D. Berk, Ind. Eng. Chem. Res. 27 (1988) 1951-1954. [21] A. Bobrin, V. Anikeev, A. Yermakova, V. Zheivot, V.A. Kirillov, React. Kinet. Catal. Lett. 40 (1989) 357-362. [22] D. J. Mulligan, D. Berk, Ind. Eng. Chem. Res. 31 (1992) 119-125. [23] D. J. Mulligan, K. Tam, D. Berk, Canadian J. Chem. Eng. 73 (1995) 351-356. [24] T. S. Wiltowski, K. Sangster, W.S. O'Brien, J. Chem. Technol. Biotechnol. 67 (1996) 204-212. [25] J. Sarlis, D. Berk, Chem. Eng. Commun. 140 (1995) 73-85. [26] X. Zhang, D. O. Hayward, C. Lee, D. M. P. Mingos, Appl. Catal. B Environ. 33 (2001) 137-148. [27] S. E. Mousavi, H. Pahlavanzadeh, M. Khani, H. Ale Ebrahim, A. Mozaffari, React. Kinet. Mech. Catal. 124 (2018) 669-682. [28] M. Khani, S. E. Mousavi, H. Pahlavanzadeh, H. Ale Ebrahim, A. Mozaffari, Environ. Sci. Pollut. Res. 26 (2019) 9686-9696. [29] N. Shikina, S. Khairulin, S. Yashnik, T. Teryaeva, Z. R. Ismagilov, Eurasian Chem. Tech. 17 (2015) 129-136. [30] D. J. Mulligan, D. Berk, Ind. Eng. Chem. Res. 28 (1989) 926-931. [31] J. J. Yu, Q. Yu, Y. Jin, S. G. Chang, Ind. Eng. Chem. Res. 36 (1997) 2128-2133. [32] S. E. Mousavi, H. Ale Ebrahim, M. Edrissi, Synt. React. Inorgan. Metal-Organ. Nano-Metal Chem. 44 (2014) 881-890. [33] T. Zhu, L. Kundakovic, A. Dreher, Catal. Today 50 (1999) 381-397. [34] M. Flytzani-Stephanopoulos, T. Zhu, Y. Li, Catal. Today 62 (2000) 145-158. [35] M. Piumetti, S. Bensaid, T. Andana, N. Russo, R. Pirone, D. Fino, Appl. Catal. B Environ. 205 (2017) 455-468. [36] M. Konsolakis, S. Carabineiro, G. Marnellos, M. Asad, O. Soares, M. Pereira, J. Órfão, J. Colloid Interf. Sci. 496 (2017) 141-149. [37] C. M. Magdalane, K. Kaviyarasu, J. J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, M. Maaza, J. Alloys Compounds 727 (2017) 1324-1337. [38] Z. Liu, X. Feng, Z. Zhou, Y. Feng, J. Li, Appl. Surf. Sci. 428 (2018) 526-533. [39] C. Shan, Y. Xu, M. Hua, M. Gu, Z. Yang, P. Wang, Z. Lu, W. Zhang, B. Pan, Chem. Eng. J. 338 (2018) 261-270. [40] Z. Shi, Q. Tan, D. Wu, Mater. Chem. Phys. 219 (2018) 263-272. [41] X. F. Dong, H. B. Zou, W. Lin, Int. J. Hydr. Energy 31 (2006) 2337-2344. [42] X. Wu, S. Liu, D. Weng, F. Lin, R. Ran, J. Hazard. Mater. 187 (2011) 283-290. [43] Q. Wang, G. Li, B. Zhao, R. Zhou, J. Hazard. Mater. 189 (2011) 150-157. [44] R. Cousin, S. Capelle, E. Abi-Aad, D. Courcot, A. Aboukaïs, Appl. Catal. B 70 (2007) 247-253. [45] S.E. Mousavi, H. Pahlavanzadeh, H. Ale Ebrahim, e-J Surf. Sci. Nanotechnol. 15 (2017) 87-92. [46] P.W. Araujo, R.G. Brereton, TrAC Trends Anal. Chem. 15 (1996) 63–70. [47] H.R. Pouretedal, M. Fallahgar, F. Sotoudeh Pourhasan, M. Nasiri, Iran. J. Catal. 7 (2017) 317-326. [48] N.E. Fard, R. Fazaeli, Iran. J. Catal. 8 (2018) 133-141. [49] V. Czitrom, American Statistician 53 (1999) 126-131. [50] R. Leardi, Anal. Chim. Acta 652 (2009) 161-172. [51] A. L. Ahmad, S. C. Low, S.R. A. Shukor, A. Ismail, Sep. Purif. Tech. 66 (2009) 177–186 [52] M. Kasiri, H. Aleboyeh, A. Aleboyeh, Environ. Sci. Technol. 42 (2008) 7970-7975. [53] A. Asghar, A. Raman, A. Aziz, W.M.A.W. Daud, Sci. World J. Article ID: 869120 (2014) 1-14. [54] M. Galedari, M.M. Ghazi, S.R. Mirmasoomi, Chem. Eng. Res. Design 145 (2019) 323-333. [55] M. Joshaghani, D. Yazdani, A.A. Zinatizadeh, J. Iran. Chem. Soc. 14 (2017) 2449-2456. [56] A.S. Ertürk, J. Iran. Chem. Soc. 15 (2018) 1685-1698. [57] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487. [58] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150. [59] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Taiwan Institute Chem. Eng. 104 (2019) 130-138. [60] F. Geyikçi, E. Kılıç, S. Çoruh, S. Elevli, Chem. Eng. J. 183 (2012) 53-59. [61] M. Khayet, C. Cojocaru, M. Essalhi, J. Membr. Sci. 368 (2011) 202-214. [62] A. Özer, G. Gürbüz, A. Çalimli, B.K. Körbahti, J. Hazard. Mater. 152 (2008) 778-788. [63] M. Talebi, S. Abbasizadeh, A.R. Keshtkar, Process Safety Environ. Protect. 109 (2017) 340-356. [64] G. H. Mirzabe, A. R. Keshtkar, J. Ind. Eng. Chem. 26 (2015) 277-285. [65] F. Gönen, Z. Aksu, J. Hazard. Mater. 154 (2008) 731-738. [66] A. Najafpoor, H. Alidadi, H. Esmaeili, T. Hadilou, M. Dolatabadi, A. Hosseinzadeh, M. Davoudi, Asia-Pacific J. Chem. Eng. 11 (2016) 258-270. [67] M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochim. Acta 223 (2017) 47-62. [68] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem. 829 (2018) 95-105. [69] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interf. Sci. 490 (2017) 652-664. [70] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interf. Sci. 490 (2017) 628-641. [71] Y. Ding, C. Zhao, Y. Li, Z. Ma, X. Lv, Quim. Nova 41 (2018) 1156-1161. [72] B. Choudhury, P. Chetri, A. Choudhury, RSC Adv. 4 (2014) 4663-4671. [73] R. Shi, F. Wang, Y. Li, X. Huang, W. Shen, Green Chem. 12 (2010) 108-113. [74] A. Ruíz-Baltazar, R. Esparza, G. Rosas, R. Pérez, J. Nanomater. 16 (2015) 202. [75] S. Abbasizadeh, R. Karimzadeh, Micro. Meso. Mater. 266 (2018) 132-140. [76] S. Abbasizadeh, R. Karimzadeh, Res. Chem. Intermed. 45 (2019) 955-972. [77] A. H. Khangah, M. J. Sarraf, H. Ale Ebrahim, M. Tabatabaeee, e-J Surf. Sci. Nanotechnol. 17 (2019) 16−26. [78] S. H. Guiance, I. Coria, I. Irurzun, E. Mola, Chem. Phys. Lett. 660 (2016) 123-126. | ||
آمار تعداد مشاهده مقاله: 300 تعداد دریافت فایل اصل مقاله: 394 |