
 

  
 

 

 

 

 

 

 Bacterial and fungal communities represent key bioindicators of soil quality and are essential for the 

maintenance of nutrient availability. Our purpose was to characterize the bacterial and fungal biodiversity 

associated with different compost mixtures, comparing microbiological indicators regarding the soil quality.  

 Compost samples and mixtures were prepared (15:1 final ratio) with chemical fertilizer, animal 

manures (bovine, swine, and poultry) and green waste (such as tomato waste and leaves). Bacterial and fungal 

isolation and identification were performed through standard phenotypic methods. Statistical methods to assess 

differences between treatments included Shannon diversity, Chi-square tests, Bray-Curtis clustering, and 

Canonical Correspondence Analysis.  

 Streptomyces species, Gram-positive bacteria, were commonly found in differing abundances in all 

samples. Gram-positive species were predominant in soils amended with vegetable green waste while Gram-

negative bacteria were more abundant in samples with chemical fertilizer. Fungal abundance increased in poultry 

manure and chemical fertilizers.  

 Our findings suggested that organic matter recycling and composting resulted in the shifting of 

biodiversity in bacterial and fungal populations which might be associated with the availability of certain 

nutrient sources provided by the composting materials. 
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Agriculture, forestry, and fishing represent important 

economic activities in Colombia, despite its decline 

trend to contribute to the Gross Domestic Product from 

29.3 % in 1965 to 6.4 % in 2017 (World Bank national 

accounts data). However, the agricultural expansion 

still concerns regarding land degradation, slashed and 

burned areas, soil compaction, and livestock growth 

especially in the Amazon and Orinoco River Basin 

areas (Martínez and Zinck 2004; Lavelle et al. 2014).  

 

 

 

 

 

 

 

 

 

 

 

While crop intensification is growing to supply the 

global demand for food production, soil degradation 

represents a future challenge in long-term sustainability. 

Hence, conventional farming entails the use of large 

amounts of chemical fertilizers which would have 

detrimental effects on soil fertility and water quality 

(Potter et al. 2010; Castanheira et al. 2014). 

Alternatively, composting by using animal manures 

and vegetable residues represents a sustainable strategy 

for soil recovery and is considered a clean and safe 

practice for the agriculture and environment (Eghball 

et al. 2002; Qazi et al. 2009; Hartmann et al. 2015). 

Altogether, composting might avoid additional 

problems in agricultural practices such as chemical 

fertilizer overuse which might alter natural resources 

leading to environmental disturbance (Lupatini et al. 

2016; Shennan et al. 2017). 

In Colombia, many farmers recycle their organic 

green waste derived from intensive farming and animal 

production and use them as external compost 

amendments. Benefits of composting practices include 

the increase of organic matter and nutrients supply for 

soils as well as the increase of cation exchange 
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capacity, enhancement of microbial biomass and 

reduction of soil pests (Escobar et al. 2012; Chaparro 

et al. 2012; Zhen et al. 2014). Between animal 

manures, poultry manure is commonly used in 

Colombia due to its high content of nutrients including 

calcium, nitrogen, potassium and phosphorus and a 

good mineralization rate (>70 %) (Eghball et al. 2002). 

When composted with Azotobacter sp., Azospirillum 

sp. and arbuscular mycorrhizal fungi has a beneficial 

effect on onion crops (Montenegro-Gomez et al. 2018). 

Poultry manure has also been recommended as an 

organic alternative during the fertilization stage of 

tomato crops (Bojacá et al. 2014). 

Consistently, many environmental bacterial and 

fungal populations (including human and animal 

pathogens) have been specifically associated with 

animal manures and green wastes (Agnew and 

Leonard 2003; Partanen et al. 2010; Awasthi et al. 

2018). Moreover, bacterial and fungal biodiversity can 

shift upon the addition of nutrient sources or compost 

amendments increasing soil health and plant fertility 

through a fine-tuning of the soil microbiome (Chaparro 

et al. 2012; Lupatini et al. 2016). Consequently, this 

information might be relevant for improving compost 

quality and consistently contribute to soil health 

(Cozzolino et al. 2016; Fierer 2017). In a previous 

study, we identified the microbial biomass associated 

to several compost sources and mixtures containing the 

essential or secondary macronutrients (Ca, Mg, Na, Fe, 

Mn, Cu, Zn, S, B, Si), macronutrients (N, P, K) and 

organic matter to refine quality parameters. Those 

studies revealed a high abundance of bacteria 

belonging to Pseudomonas, Bacillus, Arthrobacter, 

and Streptomyces; and fungi taxa such as Aspergillus 

and Penicillium during organic fertilization of Zea 

mays L. and Phaseolus vulgaris L. (Escobar et al. 

2012; Escobar et al. 2013a; Escobar and Solarte 2015). 

These ideas were addressed from the perspective of 

several homemade organic fertilizers and the possible 

changes in the soil microbiome (Pineda et al. 2017). 

Since there is a need to study the succession process of 

microorganisms in amended soils, our aim was to 

characterize the microbial population associated with 

different organic fertilizers. 

 

 

 

The study was carried out in “La Esperanza” farm, in 

the rural area of Fusagasuga municipality 

(Cundinamarca, Colombia) at 04º 20' 38” N and 074º 

22' 04" W, 1,720 m.a.s.l., 25 °C average temperature 

and 85 % relative humidity.  

The study was conducted in six micro-composting 

units of 2.95 m in length and 0.65 m in width. Controls 

were organic fertilizer (poultry manure), soil with 

chemical fertilizer. Treatments were based on mixtures 

supplemented with three different animal manures 

(Table 1). The overall design consisted of three 

repetitions per unit and eighteen experimental units in 

total. Treatments included materials such as organic 

fertilizer (soil control), chemical fertilizer and compost 

mixtures described in a randomized controlled block. 

 

 Component treatments of three mixtures used as composting substrates 

Mixture Ingredients 

Mixture 1 Bovine manure, tomato plants (stems, leaves and remaining tomatoes) and home 

residues (eggshells, banana leaves and vegetable waste). 

Mixture 2 Poultry manure, coffee residues and tomato residues (stems, leaves and remaining 

tomatoes). 

Mixture 3 Swine manure, grass and citric residues (fruits and leaves of orange tree).  

Chemical fertilizer 15% nitrogen (Ammoniacal nitrogen), 15% phosphorus (Phosphorus pentoxide) and 

15% potassium (Potassium oxide). 

Organic fertilizer Dry poultry manure (Soil control). 

 

Three mixtures presented in Table 1 were made by 

combining vegetable waste (mainly tomato, citrus, and 

green waste), animal manures (bovine, pig and poultry) 

and chemical fertilizer. Triple-15®, a chemical 

(inorganic) fertilizer composed of 15% nitrogen 

(Ammoniacal nitrogen), 15% phosphorus (Phosphorus 

pentoxide) and 15% potassium (Potassium oxide). 

Mixtures were prepared using suitable solid waste 

proportions to reach a final ratio of Carbon/Nitrogen 

15:1 as previously assessed (Escobar et al. 2013a). 

Vegetal residues (leaves, stems) were cut to tiny 

fragments (< 1 cm) to simplify the decomposition 

process. The animal manure was collected fresh and 

spread over on a covered floor for drying at room 



temperature for 3 days. Subsequently, the mixtures 

were made considering a humidity ≤ 40%. (Escobar et 

al. 2013a). All treatments were composted for 70 days 

indoors at room temperature without microbiological 

inoculum for promoting the natural decomposition by 

bacteria and fungi populations. The maturity time of 

compost was between 60-90 days, monitoring 

parameters such as temperature, texture, color, C/N 

ratio and humidity as described previously (Escobar et 

al. 2013b). The physicochemical properties of compost 

mixtures are not described in this study. Compost 

ingredients were selected based on the traditional 

agroecological practices of rural and farmer 

communities of promising agricultural productions 

from the Sumapaz region, Cundinamarca (Escobar and 

Solarte 2015).  

 

 

Identification and characterization of bacteria and 

fungi were carried out in the microbiology laboratory 

of Tolima University. Samples were taken before and 

after the addition of fertilizer following the Colombian 

Technical Standard (NTC 4491-2) regarding 

microbiological procedures. Bacteria were aseptically 

isolated from serial dilutions in non-selective media 

and fungi in PDA (Potato Dextrose Agar). 

For each dilution, 100 µL of culture in triplicate were 

applied in three dilutions (10-4, 10-5 and 10-6) to obtain 

single Count Forming Unit (CFU) (Escobar et al. 

2012). CFU were grown and incubated at 30 °C for 24 

to 48 hours for bacteria and 25 °C for 48 to 72 hours 

for fungi.  

Bacterial identification included macroscopic 

characterization of colonies, which followed criteria 

such as colony size (punctate, small, medium, and 

large), color, shape (regular, round, oval, irregular, and 

filamentous rhizoids), elevation (flat, raised, and 

convex pitching), edge (whole form, wavy, sawing, 

filamentous and curly), surface, smell (ammonia, fetid, 

sweet) and growth rate (fast, moderate and slow). 

Gram staining method was performed to differentiate 

Gram-negative and positive microorganisms. BBL 

crystal kit (BD Diagnostic Systems Europe Brand) was 

used for the identification of aerobic Gram-positive 

bacteria. This system includes twenty-nine dehydrated 

chromogenic substrates and fluorescent control. 

Samples were monitored to identify color changes and 

fluorescence resulting from microorganisms’ metabolic 

activities.  

Fermentation reactions detect the ability of an 

isolate to metabolize carbohydrates in the absence of 

atmospheric oxygen and oxidation reactions are based 

on the ability of an organism to metabolize the 

substrate with oxygen being the final electron acceptor. 

Both reactions are frequently detected by using a pH 

indicator on the substrate of the analysis. Chromogenic 

substrates undergoing hydrolysis produce color 

changes, which can be detected visually (Manafi et al. 

1991; Kalita and Joshi 2017). 

Fungi isolation and characterization were 

performed according to methodologies previously 

described (Arias and Piñeros 2008; Escobar and 

Solarte 2015). Taxonomic keys based on macroscopic 

and microscopic features and microbiological isolation 

were required to determine to genus level. Sampling 

was conducted with a method based on adhesive tape 

strips. A strip (4 cm) was folded and slipped over the 

surface to remove hyphal segments. Then, the strip 

containing the fungal segment was covered with 

lactophenol blue for further microscopic analysis 

(Winn et al. 2001; Urzı and De Leo 2001).  

 

 

Data analysis was performed for initial soil control and 

for each treatment based on biodiversity indexes. 

Shannon diversity tests were assessed with Past 

program version 3.16 (Hammer et al. 2001). 

Differences between treatments were assessed with 

ANOSIM (p-value 0.0009), Chi-square and Bray-

Curtis clustering included in R program (Version 9.5). 

The correlation between all mixtures and microbial 

biomass was carried out based on Pearson’s correlation 

coefficients (p < 0.05). A linear relationship was 

assessed for the bacterial and fungal communities as 

variables per each compost mixture to conduct a 

Canonical Correspondence Analysis (CCA) combined 

with a Partial Least Squares (PLS) as described 

previously (Escobar and Solarte 2015). 

 

 

We characterized bacterial and fungal populations in 

compost mixtures and treatment combinations (Tables 

5 and 6 in Appendix). To test data variation, the Chi-

square test indicated a relationship between variables 

(p-value <0.05) and correlation analysis of 72.8 %. 

Sample combinations with enhanced bacterial diversity 

were soil plus mixture 2 and 3; chemical fertilizer plus 

mixtures 1, 2 and 3 and organic fertilizer; organic 



                                                         

fertilizer plus mixture 2 and mixture 1 plus mixture 2 

(Table 2). Similarity analyses through a dendrogram 

clustered in a single branch with all mixtures 

(treatments) together and chemical fertilizer sharing 

the highest bacterial diversity followed by the organic 

fertilizer samples and soil control (Fig. 1). 

Remarkably, the compost combinations that were 

found to be the most diverse were: organic fertilizer 

with mixture 1; mixture 1 with mixture 3; mixture 

2 with mixture 3 and mixture 1 with soil without 

amendment (Table 3). 

 

 Compost mixtures containing animal manures, vegetable residues, fertilizers (organic and chemical) and soil 

samples 

*df = degree freedom. ** Values lower than 0.05 indicate significant differences. Shannon’s diversity indexes: <2= Less diverse, 2-

3= Normal and >3 highly diverse 

 

 
 Similarity dendogram for compost samples. Similarity values are numbered across the branching clustering (right)

Combination Shannon 

index (A) 

Variance 

(A) 

Shannon 

index (B) 

Variance 

(B) 

t df* p-

value** A B 

Soil Chemical fertilizer 2.36 0.02 1.97 0.04 1.71 24.21 0.10 

Soil Organic fertilizer 2.36 0.02 2.63 0.01 -1.65 52.27 0.11 

Soil Mixture 1 2.36 0.02 2.51 0.02 -0.83 53.65 0.41 

Soil Mixture 2 2.36 0.02 2.95 0.01 -3.75 51.00 0.00 

Soil Mixture 3 2.36 0.02 2.76 0.01 -2.37 56.03 0.02 

Chemical 

fertilizer 

Organic manure 
1.97 0.04 2.63 0.01 -3.04 20.20 0.01 

Chemical 

fertilizer 

Mixture 1 
1.97 0.04 2.51 0.02 -2.36 24.36 0.03 

Chemical 

fertilizer 

Mixture 2 
1.97 0.04 2.95 0.01 -4.59 19.26 0.00 

Chemical 

fertilizer 

Mixture 3 
1.97 0.04 2.76 0.01 -3.57 21.82 0.00 

Organic 

fertilizer 

Mixture 1 
2.63 0.01 2.51 0.02 0.72 59.09 0.47 

Organic 

fertilizer 

Mixture 2 
2.63 0.01 2.95 0.01 -2.39 85.01 0.02 

Organic 

fertilizer 

Mixture 3 
2.63 0.01 2.76 0.01 -0.89 77.26 0.38 

Mixture 1 Mixture 2 2.51 0.02 2.95 0.01 -2.81 58.34 0.01 

Mixture 1 Mixture 3 2.51 0.02 2.76 0.01 -1.48 62.63 0.14 

Mixture 2 Mixture 3 2.95 0.01 2.76 0.01 1.34 81.40 0.18 



 Estimates of biodiversity between treatments and soil before amendments 

 
Chemical fertilizer Organic fertilizer Mixture A Mixture B Mixture C Soil control 

Chemical fertilizer  0.04 0.10 0.00 0.00 0.30 

Organic fertilizer 0.04  0.61 0.02 0.27 0.30 

Mixture 1 0.10 0.61  0.01 0.32 0.63 

Mixture 2 0.00 0.02 0.01  0.34 0.00 

Mixture 3 0.00 0.27 0.32 0.34  0.06 

Soil control 0.30 0.30 0.63 0.00 0.06  

 

Composting of animal manures and vegetable 

residues have been described to increase yields in plant 

productivity compared to chemical fertilizers (Lupatini 

et al. 2016). In Colombia, some rural communities 

separate organic green waste (e.g. vegetable and fruit 

green waste) from garbage for composting them with 

animal manures and proper use as homemade organic 

fertilizers. In this study, we suggest that composting 

practices might contribute to improve and restore the 

soil health regarding biological indicators avoiding the 

chemical fertilizer overuse.  

The role and ecological interactions between 

certain bacterial and fungal populations are pivotal in 

the composting process to enhance compost quality 

and to improve the soil microbiome (Devi et al. 2012; 

Zhen et al. 2014; Pineda et al. 2017). Species 

associated with different mixtures provided in this 

study are identical to microbial biomass identified in 

other compost recipes (Anastasi et al. 2005; Sánchez et 

al. 2017; Frąc et al. 2018; Sahu et al. 2019). Some 

studies have shown that microbial communities play an 

important role as compost inoculants due to their 

ability to produce hydrolytic enzymes for accelerating 

the compost maturation and trigger the mineralization 

process (Chandna et al. 2013; Baćmaga et al. 2015; 

Awasthi et al. 2018).  

Bacterial biodiversity in different compost 

formulations has been shown to increase beneficial 

gram-positive bacteria and fungi, and experimental 

evidence supports that bacterial communities seem to 

be more important for decomposition process than 

fungal species (Fries et al. 2005; Storey et al. 2015). 

This hypothesis is supported by some studies 

suggesting that the bacterial density is always higher 

than the fungal density whatever the age of the 

compost and soil (Chennaoui et al. 2018). Moreover, 

microbial consortia formed by species of Bacillus, 

Pseudomonas and Streptomyces are key producers of 

antimicrobial secondary metabolites that arrest many 

co-existing phytopathogenic fungi and promote plant 

growth (Pathma et al. 2011; Santacoloma-Varón et al. 

2017). 

Bacterial diversity in compost mixtures was 

different between treatments supplemented with 

chemical fertilizer. Gram-positive bacteria were 

predominant in soils amended with vegetable green 

waste while Gram-negative species were more 

abundant in samples containing chemical fertilizer. To 

test the relationship of some bacterial groups with 

compost mixtures, we ran a CCA together with PLS. 

The bacterial communities in control soil samples were 

less diverse compared to mixtures with chemical 

fertilizer and composted with animal manure and 

vegetable residues. The predominant bacterial 

communities in the soil control sample were 

Paucimonas, Escherichia and Pseudomonas. On the 

other hand, dominant bacterial communities identified 

in the compost mixtures were Morganella in mixture 

1; Enterobacter and Nitrosomas in mixture 2 and 

Streptomyces and Arthrobacter in mixture 3. 

Regarding organic and conventional compost, Proteus 

and Bacillus were more abundant in chemical fertilizer 

and Staphylococcus, Nitrobacter and Micrococcus in 

organic fertilizer (Fig. 2). 



                                                         

 
 Correspondence analysis of bacterial communities. Bacterial groups were colored in blue and substrates in green. 

Proximity in the map represents association to each substrate or mixture 

 

Cluster analysis of fungal diversity showed some 

communities that were restricted to some compost 

samples as found in bacteria. Fungal diversity 

identified in mixture 1 was Rhizopus, Sordaria, and 

Trichoderma. For soil and mixture, 2 contained mainly 

Aspergillus. Mixture 3 showed Nigrospora, Alternaria, 

Sistotrema, and Cladosporium as dominant communities. 

The fertilizer sample presented Moniliella and 

Thielavia. Pearson’s Chi-squared test showed that 

poultry manure had the lowest fungal diversity and the 

bacterial and fungal groups changed significantly upon 

composting amendment (Fig. 3). Soil control contained 

Cephaliophora, Macrosporium, Thysanophora as 

fungal communities and Penicillium, Humicola, 

Staphylotrichum and Zygorhynchus in organic 

fertilizer. 

Some bacterial species were more abundant upon 

certain manure and vegetable sources. First, compost 

mixtures containing bovine manure harbored Proteus 

and Morganella and fungal genera such as Rhizopus, 

Sordaria, Trichoderma, and Aspergillus.  

Second, bacterial specimens in poultry manure 

from Enterobacter, Nitrosomonas, Bacillus genera 

and fungal communities including Cephaliophora, 

Macrosporium, Thysanophora, Penicillium, Humicola 

and Zygorhynchu were identified. Finally, bacterial 

diversity in swine manure was represented by 

Streptomyces, Arthrobacter and fungal specimens 

such as Sistotrema and Alternaria genera.  

To describe the potential contribution from each 

bacterial and fungal population in compost mixtures, 

we compared their expected roles in the soil (Table 

4). Positive effects of both compost mixtures and 

fertilization (organic and chemical) have been 

reported for both bacterial and fungal species. In 

consensus, it can be assumed that the use of animal 

manure and green waste treated-soils harbored certain 

bacterial species that promote biocontrol, nitrogen 

fixation and control of soil pests.   



 
 Correspondence analysis for fungal groups identified in soil and compost samples. Proximity between fungal groups 

and samples represent their association. Fungal groups were colored in blue and substrates in green 

 

 The potential biological contribution to the soil of bacterial and fungal species found in this study according to 

earlier reports (Anastasi et al. 2005; Sánchez et al. 2017; Frąc et al. 2018; Sahu et al. 2019) 

Sample Bacteria Expected role Fungi Expected role 

Control Escherichia, 

Paucimonas 

Plant growth and nutrient 

uptake, bioremediation 

Penicillium, 

Zygorhynchus, 

Cephaliophora, 

Thysanophora, 

Macrosporium 

Antibiotic production. 

Bioremediation. 

Phosphorus mobilization. 

Mixture 1 Morganella, 

Nitrosomonas, 

Indicator of Nitrogen rich soils. 

Insecticide degradation. 

Nitrifying bacteria. 

Sordaria, Rhizopus, 

Trichoderma 

Reduction in soils affected 

by drought. Bio-stimulants 

and biocontrol agents 

Mixture 2 Bacillus, 

Enterobacter 

Biocontrol of Colletotrichum 

fulcatum and 

Macrophomina sp. Nitrate 

reduction. 

Aspergillus Recycling starches, 

hemicelluloses, celluloses, 

pectins and other sugar 

polymers. 

Mixture 3 Streptomyces, 

Arthrobacter 

Disease suppressive soils Sistotrema, 

Alternaria, 

Nigrospora, 

Cladosporium 

Mycorrhizal fungi 

associated to nutrient 

uptake for plants. 

Phytopathogens. 

Organic 

fertilizer 

Staphylococcus, 

Nitrobacter, 

Micrococcus 

Oxidation of organic nitrogen Trichurus Bioremediation 

Chemical 

fertilizer 

Pseudomonas Promote fermentation and 

mineralization of nutrients and 

biocontrol 

Moniliella, 

Thielavia 

Lead tolerant species. 

Biodegradation 

   



                                                         

High frequency of some Gram-negative bacteria 

such as Escherichia and Pseudomonas in the soil 

before adding compost sources was identified. 

Nevertheless, another report has explained the 

abundance of Gram-positive in sample soils due to 

their ability to persist via endospore formation which 

survive by degrading specific sources either vegetable 

green waste, or animal manures (Fries et al. 2005; 

Pan et al. 2012). Those findings are consistent 

with our clustering patterns across the bacterial 

communities which might indicate a diversification 

related to the carbon and nitrogen availability (Fierer 

2017; Meng et al. 2019). 

The most diverse compost samples were those 

mixtures containing several carbon and nitrogen 

sources such as poultry manure. Thus, our results are 

consistent with mineral and nutrient contribution 

associated with specific abundance of certain 

bacterial and fungal species (Eghball et al. 2002; 

Yanagi and Shindo 2016). Some mixtures containing 

certain green waste products promoted specific 

bacterial communities as estimated with our 

biodiversity indexes. The ecological succession 

occurs during compost maturation due to factors such 

as: mineral and nutrient availability, environmental 

conditions, physicochemical properties, and bacterial 

and fungal competition (Neher et al. 2013; Tiquia and 

Tam 2000). Besides, animal manures contain not only 

beneficial microorganisms, but also essential minerals 

and organic material resulting from the animal 

metabolism (Fischer and Glaser 2012; Montenegro-

Gomez et al. 2018). Thus, mineral content in animal 

manures from Colombia revealed that bovine manure 

was rich in C source because of its fibrous forage 

content; poultry and swine manure had a higher 

content of macronutrients, secondary nutrients such 

as Ca and Mg, and micronutrients including B, Zn, 

Cu, Mn and Fe which might explain their higher 

bacterial diversity (Escobar and Solarte 2015). 

The addition of specific C and N sources together 

with chemical fertilizers has been reported to 

selectively favor particular bacterial groups for the 

uptake of available nutrients (Souza et al. 2014; 

Nigussie et al. 2015). However, depending on 

compost mixtures detrimental effects for plant 

productivity might result from pathogen proliferation 

which affects the efficiency of symbiotic relations 

between soil microorganisms and plants (Cozzolino 

et al. 2016). 

Hence, bioremediation was another role for 

microbial biomass that might alleviate pollutants in 

the soil. Some of the fungal communities found (e.g. 

Rhizopus sp., Penicillium sp., Aspergillus sp.) have 

been proven to perform a key role in the removal of 

pollutants from the soil and contribution in alleviating 

phosphorus fraction in soils evidencing adaptability 

to harsh conditions (Srivastava et al. 2011; Gaind 

2014). The results showed the bacterial and fungal 

enrichment through different compost mixtures might 

improve the soil microbiome as reported in organic 

farming systems compared to conventional farming 

systems (Hepperly et al. 2009; Hartmann et al. 2015; 

Lupatini et al. 2016; Finkel et al. 2017). In a similar 

study, Chinese mollisols only reached a minor 

recovery attributable to soil fungal diversity 

impairment upon the addition of chemical fertilizers 

combined with animal manures (Ding et al. 2017). 

Our results also suggest that poultry manure 

showed a positive effect in the enrichment of certain 

bacterial communities such as Gram-negative 

bacteria upon different nutrient composition which 

was statistically supported by similarity analysis 

(Escobar et al. 2012). Interestingly, Streptomyces and 

Arthrobacter species have been determined as being 

beneficial in suppressing tobacco bacterial wilt (Wu 

et al. 2014). Particularly, Arthrobacter species are 

well-known for producing substances that positively 

promote plant growth and development (Pathma et al. 

2011). Altogether, microbial abundance might serve 

as indicators of soil status regarding physicochemical 

properties and health (Trivedi et al. 2016). Regarding 

swine manure, Firmicutes and Proteobacteria have 

been reported as the most abundant phyla with 

significant shifts to anaerobic populations d 

uring maturation (Ma et al. 2018). Furthermore, 

bovine manure has been shown to be useful through 

the increase of aerobic microbiome which promotes 

beneficial plant-interactions in avocado (Ramírez-Gil 

et al. 2013).  

A final consideration, it is important to consider 

the collateral risk of composting manure from 

animals exposed to intensive antibiotic pressure due 

to the enrichment of antibiotic resistance genes 

(ARGs) in the soil and environment (Gillings et al. 

2015; Chen et al. 2016; Xie et al. 2018). Hence, 

composting with excessive amounts of those manures 

might increase ARGs, decrease soil microbial 

activity, and impair biogeochemical cycles in soil 

microenvironments (Lin et al. 2016; Kuppusamy et 

al. 2018). This situation also entails actions to 

promote organic production and training in antibiotic



stewardship during animal husbandry before using 

manure as a compost source. 

 

 

Our result showed that diversification of microbial 

populations occurs between compost mixtures and 

upon soil amendments (organic residues and chemical 

fertilizers) in comparison with soil control. Mixtures 

which seem to be more efficient are those including 

soil bacteria and fungi species from nitrogen-fixing 

genera and decomposer communities. Additionally, 

compost combinations were more diverse and 

abundant when combined with different sources 

(including chemical fertilizer) as seen in the clustering 

pattern and CCA. Thus, our results showed that Gram-

positive species were commonly found in mixtures 

supplemented with vegetable residues while Gram-

negative bacteria and fungal populations were more 

abundant in samples with chemical fertilizer. Further 

studies are needed to evaluate the best formula to 

promote beneficial plant-microbe interactions and to a 

better understanding of the behavior of beneficial 

microbial populations.  
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 Count of bacterial taxa in each compost mixtures and treatment combinations. Shannon index was calculated based 

in the relative abundance of individuals according to colony count obtained in the single CFU (dilutions 10-4, 10-5 and 10-6) 

and each taxa identified per treatment. Taxa identification was performed at genus level 

Treatments No. taxa Fungi taxa 

Mixture 1 7 Alternaria, Aspergillus, Cladosporium, Rhizopus, Staphylotrichum, Sordaria, Trichoderma 

Mixture 2 11 
Alternaria, Aspergillus, Cephaliophora, Cladosporium, Humicola, Macrosporium, 

Penicillium, Rhizopus, Sordaria, Thysanophora, Zygorhynchus 

Mixture 3 7 Aspergillus, Alternaria, Cladosporium, Penicillium, Nigrospora, Rhizopus, Sistotrema 

Organic fertilizer 7 
Cephaliophora, Humicola, Macrosporium, Penicillium, Staphylotrichum,Thysanophora, 

Zygorhynchus 

Chemical fertilizer 4 Alternaria, Moniliella, Thielavia, Trichurus 

 

 Count of fungi taxa in each compost mixtures and treatment combinations. Shannon indexes were determined as 

described with bacterial taxa 

Treatments No. taxa Bacterial taxa 

Mixture 1 10 
Actinobacteria, Arthrobacter, Bacillus, Enterobacter, Morganella, Nitrobacter, Proteus, 

Pseudomonas,  Staphyloccocus, Streptomyces 

Mixture 2 10 
Actinobacteria, Arthrobacter, Bacillus, Enterobacter, Micrococcus, Nitrosomas, 

Nitrobacter, Pseudomonas, Staphyloccocus, Streptomyces 

Mixture 3 9 
Actinobacteria, Arthrobacter, Bacillus, Enterobacter, Micrococcus, Nitrobacter, 

Pseudomonas, Staphyloccocus, Streptomyces 

Organic fertilizer 7 
Actinobacteria, Bacillus, Enterobacter, Escherichia, Paucimonas, Pseudomonas, 
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