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Abstract Since zooplankton is the main route of biomass transfer between producers and consumers,
zooplankton secondary production is an important measure to evaluate the flow of matter through the
trophic levels in aquatic food chains. Secondary production measures may be employed to characterize the
zooplankton functional role and to assess the impacts on ecosystem processes and services. The objectives
of this study were: 1- to review the main methods to quantify zooplankton secondary production and 2- to
carry out a survey of the studies made in Brazil, identifying their gaps, potentialities and perspectives. We
conducted a search of publications using secondary production measures in Brazilian aquatic environments
in different databases ("Web of Science", "Scopus" and "Scielo"). We found that secondary production
measures are based on three main approaches: physiological, enzymatic and population dynamics. The main
measures of zooplankton secondary production used in freshwater environments are based on recruitment
and biomass increase methods while in transitional and marine environments predominate measures based
on growth rate. We found 60 publications among scientific articles, thesis and book chapters developed
in Brazil. The studies on zooplankton secondary production have grown in recent years, however most
publications were carried out in the southeast region, especially in reservoirs with descriptive approaches.
Since there is still a lack of basic information on tropical species and environments, it is important to
develop new studies focusing on more complex issues, such as aquatic ecosystems functioning, the effects
of environmental changes and anthropic impacts on ecosystem processes and the aquatic environments
contribution to biogeochemical global cycles.
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Introduction

The importance of production measures has been recognized since the last century due to the increasing
concern to quantify ecosystem dynamics and functioning (Edmondson and Winberg 1971; Waters 1977).
From the ecosystem functioning perspective, production is the mean by which energy is provided from
one trophic level to the next (Waters 1977). However, it can also be understood as the set of processes by
which heterotrophic organisms sustain and propagate themselves (Lehman 1988). It can also express the
population or community fitness over time (Dolbeth et al. 2012).

The secondary production of a system corresponds to the production of organic matter by heterotrophic
organisms, which can be quantified by measuring the increase in biomass resulting from food assimilation
per unit of time (Edmondson and Winberg 1971). It is the final step of all processes involved in consumption
and matter transformation (Santos-Wisniewski and Rocha 2007), life history patterns and survival strategies
(Lehman 1988) and energy storage rates of consumers (Odum 1983). The idea behind the studies that
measure secondary production is that the ecological units are analyzed as bioenergetic systems whose
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balance between matter input and output is related to productivity (Petrusewicz and Macfadyen 1970).
Since secondary production is a measure of the fresh matter formed, its quantification allows measuring
the amount of biomass renewed per unit of time (Lampert and Sommer 1997).

According to Downing (1984) the use of secondary production measures is related to four different
objectives: 1 - Comprehension of the transfer mechanisms of matter and energy; 2 - Management of
water resources; 3 - Detection and evaluation of pollutants and 4 - Formulation and testing of biological
productivity theories. Secondary production is a measure that has great advantages over others because it
incorporates the population performance and integrates the biotic interactions among community members.
The main advantages are: characterization of the species or community functional role; better assessment
of the impacts of natural or anthropic disturbances on ecosystem processes and load capacity for a given
resource (Dolbeth et al. 2012).

The first study of zooplankton secondary production was performed by Lindeman (1942), serving as a
basis for further studies and establishing important information on the dissipative processes of excretion and
respiration. Since then, the number of studies on secondary production has grown, especially in the 1970s
after the publication of the International Biological Program (IBP) Handbook N17 (Edmondson & Winberg
1971 - Ist ed., Rigler and Downing 1984 - 2nd ed.). The IBP Handbook N17 establishes the main methods
of secondary production measurement and is still one of the main references for aquatic production studies.
With the increase of environmental changes, studies on secondary production, metabolism (respiration,
excretion, feeding rates, etc.) and zooplankton trophic role represent priority research lines for ecologists
around the world (Lopes 2007). However, although more than 30 years have passed since the publication
of IBP Handbook N17, studies on secondary production are still scarce, especially in neotropics, despite
their recognized importance (Abra 2012). The objective of this study was to review the main methods for
quantifying zooplankton secondary production, their advantages and difficulties, as well as to evaluate the
studies carried out in Brazil with this type of approach. Through an extensive review of the specialized
literature, we have detailed procedures for calculating secondary production for different groups and types
of environments, especially for freshwater environments that have been the most studied. We also identified
the main gaps in studies using secondary production and the main perspectives for future research.

Measures of zooplankton secondary production

Zooplankton is characterized by species with short life cycles and high reproductive rates. Parameters such
as density or biomass alone do not reflect all the responses of these organisms to ecological interactions and
environmental factors (Edmondson 1974). Therefore, from an ecosystem approach, secondary production
measures have particular importance (Meldo and Rocha 2006 ; Dolbeth et al. 2012). In addition, because of
their recognized role in energy transfer from producers to consumers in higher trophic levels, zooplankton
secondary production provides valuable information for studies about trophic chains (Brito et al. 2016).

The secondary production can be evaluated from three main methods: physiological measures, population
dynamics analysis or, more recently, enzymatic measures (Meldo 1999 ; Avila et al. 2012). Physiological
methods are those that consider the rates of assimilation, respiration and/or organisms’ excretion. Methods
based on population dynamics quantify cohort variations by the sum of increments among development
phases or even by the product between growth rates and biomass (Meldo 1999). The enzymatic method is
based on the concentration in the water of enzymes related to the crustacean ecdysis process and, therefore,
to its growth and biomass increase (Sastri and Dower 2009). For all methods, individual biomass, fecundity,
development rates, predation, organism age, food availability and ecological interactions are important
intrinsic factors that may affect the zooplankton production. In addition, climatic, hydrologic variations as
well as disturbances also influence zooplankton secondary production (Meldo and Rocha 2004).

Among the groups that make up the zooplankton, rotifers and microcrustaceans (copepods and
cladocerans) are the most important. Despite their reduced size and lower biomass expression, when
compared to other groups, the secondary production of rotifers may acquire special importance in certain
types of environments where this group is abundant (Dias et al. 2014). Their consumption capacities
restricted to a certain type of food (small algae and detritus) and high reproductive rates result in an important
conversion of organic matter through the secondary production (Winberg 1971; Peldez-Rodrigues and
Matsumura-Tundisi 2002 ; Dias et al. 2014). Thus, in terms of ecosystem processes, analysis of rotifers

.
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secondary production represents a more realistic measure of the community’s energy and mass contribution
than density or abundance (Peldez-Rodriguez and Matsumura-Tundisi 2002). For rotifers, the commonly
used measure is the recruitment-based method described by Elster (1954; also found in Edmondson 1965;
Edmondson and Winberg 1971; Rigler and Downing 1984). In this method, the difference in size between
the newly hatched individual and the adult is irrelevant. Therefore, the finite birth rate is calculated in
accordance with the following formula:

B=E/Te

Where:

B = finite birth rate

E = number of eggs/female ratio
Te = egg development time

The values for the embryo development time of the egg can be obtained by experiments conducted in
the laboratory, continuous sampling in field, by equations that consider the environment temperature values
(see Bottrell et al. 1976) or in specific literature (for Brazilian continental aquatic environments see: Pelaez-
Rodrigues and Matsumura-Tundisi 2002; Negreiros 2010; Negreiros 2014). Once the values of the finite
birth rate are obtained, the recruitment of the community is calculated as the number of individuals added
to the population by the formula:

Pn=Nf*B

Where:

Pn = recruitment of new individuals
Nf = number of females

B = finite birth rate

The secondary production (organic matter weight) is obtained by multiplying the population recruitment
value by the average individual weight in the equation:

P=Pn*W

Where:

P = secondary production

Pn = recruitment of new individuals
W = average individual weight

The weights of the rotifers can be obtained by direct weighting on a microanalytical precision balance
or from their biovolumes obtained by the formulas provided by Ruttner-Kolisko (1977).

In freshwater environments several studies have found a great contribution of cladocerans to plankton
productivity (Meldo 1999; Brito 2010), while in marine environments the copepods contribution is more
significant (Ara 2004; Ara 2008). Regardless of the type of environment, the most used secondary production
measure for both groups of microcrustaceans is the biomass increase method proposed by Winberg et al.
(1965) (also found in Edmondson & Winberg 1971). The population production will be the sum of the
increments in weight, for each stage of development, age or size class. For cladocerans, which usually
present continuous growth, it is more appropriate to consider size classes (neonates, young and adults).
Thus, the simplified formula for secondary production is:

Pd=Ne*(Wn-We) + Nn*(Wvy-Wn) + Ny*(Wa-Wy)

Te Tn Ty
Where:

Pd = Production in a unit of time e=egg
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W = dry weight n=neonate
N = number of individuals y=young
T = duration of each stage of development a=adult

The secondary production calculation for copepods is done following the same procedure applied to
cladocerans. As adults do not show growth, we consider the different phases of development (nauplii,
copepodite and adult), development time and biomass of each phase (Winberg et al. 1965). Thus, the
formula is:

Pd=Ne*(Wn-We) + Nn*(Wei3-Wn) + Nei o (Wezg-W

€12

Te Tn Ters Tesa
Where:
Pd = Secondary Production in a unit of time e=egg
W = dry weight n=nauplii
N = number of individuals ¢, ,= copepodite phase 1 to 2
T = duration of each development stage c,, = copepodite phase 3 to 4
A= adult

The post-embryonic development time for each phase for both groups of microcrustaceans can be
obtained through laboratory cultures or in the literature (see Bottrell et al. 1976; Espindola 1994; Rietzler
1995; Santos-Wisniewski and Rocha 2007; Santos et al. 2010). The weight can also be obtained directly
by weighting on precision balance or indirectly calculated from weight-length regressions (See Botrell et
al. 1976, for regressions of Brazilian species from lakes, floodplain lakes and reservoirs see Maia-Barbosa
and Bozelli 2005; Gonzalez et al. 2008; Azevedo et al. 2012; Brito et al. 2013). However, for most species
this information has not yet been established. For marine species, this information is even more scarce (see
Chisholm and Roff 1990 for weight-length regressions for tropical marine species).

Due to difficulties in obtaining the biomass increment values of the different development phases for
different species, other secondary production measures may be employed. An alternative calculation is the
product between biomass and birth rate (Hart 1987). This type of estimate is most found in marine studies.
First, the finite birth rate is estimated by the formula:

B=E/N*Te

Where:

B = finite birth rate

E = density of eggs

N = adult population density

Te = time of embryonic development

Then, secondary production is estimated by the product of the finite birth rate and individual biomass:
P=pf*B

Where:

P = secondary production
B = biomass

[ = finite birth rate

Many studies in marine environments still use other methods to estimate secondary production. These
estimates are made by equations similar to those proposed by Hart (1987), but instead of considering the
product between biomass and finite birth rate, the models consider the product of biomass by the rate of
growth and are called production by instantaneous growth. Some studies propose the following equation
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(Rigler and Downing 1984; Avila et al. 2012):

P=N*B*G

Where:

P = secondary production
N = abundance or density
B = individual biomass
G = growth rate

In turn, growth rates can be calculated based in models that consider, at different levels, the influence
of temperature, food availability and organism size. The most common models are those proposed by (1)
Huntley and Lopez (1992), (2) Hirst and Sheader (1997), (3) Hirst and Lampitt (1998) e (4) Hirst and
Bunker (2003), whose equations are:

(1) G=0,445¢e>111'T
(2) Log;0.G=0,0246*T - 0.2962*Log;o.C — 1,1355
(3) Log;0.G=0.0208*T — 0.3221*Log,,.C — 1.1408

(4) Log10.G= a*T — b*Log;oC — ¢*Log;oChlo-a +d

Where:
G = growth rate
T = temperature
C = biomass in carbon content
Chlo-a = concentration of chlorophyll
a, b, c and d = coefficients for each development stage and spawning strategy (for more details see Hirst
and Bunker 2003).

More recently, methods based on the relationship between the enzyme activities involved in ecdysis,
mainly the enzyme quitobiase, and the growth of crustaceans has been developed. In this estimation,
the method proposed by Sastri and Dower (2009) is the most widely used in studies in freshwater and
marine environments. This method is based on the balance over time between the activity generated due
to the enzyme released and the natural enzyme degradation, where there is a positive correlation between
the quitobiase activity and the size and biomass of the microcrustaceans. However, this method may be
inaccessible due to the complex chemical analyzes. It also may overestimate secondary production values
due to interference from other non-planktonic organisms (e.g. benthic crustaceans) or enzyme releases by
organism’s death and predation and not actually by increment or production.

All methods listed here have some limitations and difficulties. The great problems in the zooplankton
secondary production measures are the validation of global growth models, accurate estimates of biomass
and development time, especially for tropical species. Most equations available in the literature were
elaborated based on temperate and freshwater species and the few estimates available for the tropical
ones do not contemplate all species diversity. In addition, some problems listed by Meldo (1999) are still
present, such as: difficulties in the analysis of samples; definition of developmental stages or size classes;
maintenance of laboratory cultures for determination of life cycle and problems in obtaining dry weight
values. A large number of individuals of the same species and size class is required to reach a detectable
level, even on high precision balances.

Despite its recognized importance, the entire procedure for obtaining the zooplankton secondary
production is quite complex and laborious, especially during the sample analysis. It requires a long time
for the individual’s measurement and/or weighting and/or cultivation. All these steps require a certain
expertise, dedication, planning and full attention in the species identification or measurement. Because the
microscopic size of the zooplankton, many errors and inaccuracies can occur during the sample analysis.
All these difficulties make the studies with secondary production unattractive and/or infeasible, resulting in
the low number of studies carried out in neotropical countries, such as Brazil, as detailed below.
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Studies with secondary production in Brazil: a case study

Studies carried out over the past decade have already pointed to the incipience of secondary production studies
in tropical regions when comparing the amount of information produced for temperate environments (Lopes
2007; Santos-Wisniewski and Rocha 2007). To quantify the number of studies carried out in Brazil using
zooplankton secondary production and have an updated scenario of these studies, we searched for publications
in the “Web of Science”, “Scopus” and “Scielo” databases. We used different combinations of the following
keywords: 1- “Production” and “Zooplankton” and “Brazil”; 2- “Secondary production” and “Zooplankton”
and “Brazil”; 3- “Productivity” and “Zooplankton” and “Brazil”. Searches with the same words in Portuguese
were also performed. We also considered book chapters, doctoral thesis, master’s dissertations and publications
that were not found in the initial searches in the databases, but which were cited in other publications. For
publications whose access was not possible, we obtained the information from the abstract, keywords and title
or from other publications that referred them. We considered publications made up to 2019.

We extracted the following information from the publications: year, type of publication, type of
environment, type of ecosystem, region where the study was carried out, ecological approach according
to Downing (1984), study group, biological organization level, secondary production measure and values
of secondary production found in each study. All information and respective categories extracted from
the publications are detailed in Table 1. Review studies that did not present original data on secondary
production were not included.

A total of 60 studies were developed in Brazil on zooplankton secondary production during the period
from 1984 to 2019 (Table 2, Figure 1). Among these studies, 34 or 56.66 % are articles published in

Table 1 Data extracted from 60 studies on zooplankton secondary production published from 1984 to 2019 in Brazil. *two
or more ecosystem; **studies on zooplankton culture or experiments were classified among of the type of environment
(marine, freshwater or transitional) according to the origin of the species used.

Category Sub-category
Year of publication - -
Type of publication Article -
Thesis/Dissertation
Book chapter
Scientific Meeting abstract
Type of environment and ecosystem Freshwater Reservoir
Floodplain lake
Lake

Coastal lagoon

Marine Continental shelf
Coral reef
Estuary
Transitional Mangrove/Estuary
Lagoon/Estuary
Various*
Culture/Experiment**
Region North -
Northeast
Central-western,
Southeast
South
Ecological approach Matter and energy transfer mechanisms

Management of water resources
Detection and evaluation of pollution agents
Hypothesis testing about productivity
Methodological
Study group Mesozooplankton
Copepods
Cladocerans
Rotifers
Two or more groups
Biological organization level Population
Community
Secondary production measure - -
Secondary production values Minimum mgDW m™ day!
mgC m* day”!
Maximum
mgDW m™ day!
mgC m> day!

.
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national and international journals, 22 or 36.66 % are PhD theses and master’s dissertations, 2 are book
chapters and 2 are abstracts of scientific meetings, making up together about 7 % of publications. The
first publications on secondary production occurred in the 80’s and after a period without any publication
(between 1989 and 1992), there is an increase in the number of publications up to 2019 (Figure 1). Most
studies were conducted in freshwater environments or with species from these environments (Figure 1).
The first publication for transitional environments occurred in 1998 and in a marine environment only in
2003. In a review of marine zooplankton studies from Brazil, Lopes (2007) already pointed out the small
number of publications and the necessity to investigate the process and mechanisms that govern the trophic
interactions. He also pointed out the lack of studies on zooplankton production in relation to abiotic factors
(Lopes 2007). However, the increase in number of publications was small for all types of environments.

Given the species loss scenario and environmental degradation, the discrete increase in the number
of publications is a result of researchers’ concern to quantify the relationship between productivity and
ecosystem services. Recent estimates reinforce the importance of biodiversity for biomass accumulation
and resource use within different trophic levels, with important implications for ecosystem services such
as fishery, food production and water purification (Duffy et al. 2017). Caliman et al. (2010) found that
ecologists are already recognizing the potential of aquatic environments to increase the knowledge on
ecosystem functioning. Therefore, the use of zooplankton secondary production measures may be an
essential tool for understanding the mechanisms that govern the functioning of aquatic environments.

When considered the region of Brazil where the studies were developed, the results showed a
predominance of the Southeast region, with 44 studies or 73.33 % of all publications, followed by the South
region, with 10 publications or 16.66 %. In the North region only 4 publications were found (6.66%) and for
the Northeast region only 2 (3.33%) (Table 2, Figure 2). No publication was found for the Central-Western
region of Brazil. The predominance of studies in the Southeast region is expected since the most part of
universities and research centers are concentrated in this region and, consequently, most of the research
groups on aquatic ecology. This fact is a result of the historical process of Brazilian development, where
the Southeast region concentrates not only the largest populations, but also the most important economic
centers. Brazil is a country of continental dimensions and the difficulty of covering larger areas is a great
challenge in terms of economic and human resources.

The lack of studies in the North and Central-Western regions is surprising since they have the world’s
most important river basins in terms of area and volume (Amazonian basin in North) and the largest wetland
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Fig. 1 Number of publications on zooplankton secondary production in Brazil from 1984 until 2019 divided by type of
environment.
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(Pantanal in Central-Western). For marine environments the pattern is the same, the studies are concentrated
on the Southeast region. However, Southeast region corresponds only to 1,650 km of the total 7,367 km of
the Brazilian coast (IBGE, 2011). Considering the importance of zooplankton to matter transfer in marine
trophic chains and fishery production, the absence of studies on secondary production in other regions
of Brazil is equally surprising. Our results illustrated that even today there is a lack of knowledge about
aquatic productivity in Brazil. Since this information is practically nonexistent, the development of studies
investigating the mechanisms that govern the productivity on these environments is urgent.

We found studies in 9 different types of aquatic ecosystems, studies carried out in more than one
ecosystem and experimental studies in laboratory (Table 2). Reservoir was the most studied ecosystem,
with 24 publications on zooplankton secondary production or 40 % of the total. Mangrove/estuary,
floodplain lakes and continental shelf were the second most studied ecosystems with 6 publications or 10%
each (Figure 2). Pioneering studies on secondary production were carried out in reservoirs and only from
the 2000s onwards occurred a real diversification of the types of environments as a consequence of the
increase in the number of studies. Until now studies on secondary production in reservoirs continues to be
a common research area (Brito et al. 2016). This predominance is related to several objectives, such as the
assessment of the potential of energy production, evaluation of multiple uses, pollution effects, potential
for the discharge of sanitary sewage and water quality control (Pelaez-Rodrigues and Matsumura-Tundisi
2002; Brito 2010; Viti et al. 2013). Reservoirs can also be used for leisure activities, water consumption
and aquiculture. Therefore, understanding the trophic relationships and matter transfer through secondary
production measures is an important management tool for these environments.

The few studies carried out on ecosystems such as coastal lagoons, temporary environments and coral
reefs illustrate how these environments are still neglected in relation to their productivity. Although they
are recognized for their high contribution to biogeochemical cycles, trophic webs and productivity at global
levels (Esteves et al. 2008; Figueirédo 2014; Calhoun et al. 2017), little is known about such information
in Brazilian environments.

Regarding the level of biological organization, most studies considered the secondary production at
community level (more than three species). However, the number of studies evaluating only one or few
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Fig. 3 Number of publications on zooplankton secondary production divided by environment type and study group

species was quite expressive (Table 2). Many authors choose to evaluate few species or only a group
of organisms due to the difficulties in evaluating the secondary production for all groups, as previously
explained. In this sense, studies considering only the secondary production of copepods were the majority,
with 19 publications, whereas studies with all three main groups (copepods, cladocerans and rotifers)
were only 10 (Table 2, Figure 3). In marine and freshwater environments copepods can account for
most of the zooplankton biomass, but the predominance of studies evaluating this group is related to the
facility to manipulate larger specimens and the easy identification of the developmental stages (nauplii,
copepodites and adults). However, an integrated view of all groups allows a more accurate evaluation of
zooplankton secondary production. For example, for freshwater environments, studies have shown that
microzooplankton, rotifers and cladocerans may present greater importance than expected by their biomass
(Panarelli et al. 2010; Dias et al. 2014)

Most of the publications had as their main ecological approach the hypothesis testing about productivity
(sense Downing, 1984). Most of which correspond to studies describing seasonal or spatial patterns of
zooplankton production (Table 2). Research on zooplankton secondary production has been primarily
descriptive, with most studies focusing on community structure analysis (Lopes 2007). The lack of studies
evaluating food webs and energy transfer through trophic levels, as well as the correlation of secondary
production with broader ecosystem patterns and processes, illustrates how this field of knowledge in Brazil
is recent. The compilation of basic information on Brazilian ecosystem’s productivity is still necessary for
the characterization of these environments and, consequently, for the understanding of its functioning and
management of its resources and services.

Mangroves were characterized as the most productive ecosystems, reaching values higher than 1000
mg DW m? day! (Figure 4). Similarly, a study in mangroves located in India found zooplankton secondary
production values around 850 mg C m? day!' (Nayar et al. 1999). These environments are widely recognized
for their high productivity since there is a large amount of carbon available for secondary production from
decomposing organic matter (Odum and Heald 1975 ; Komiyama et al. 2008). The high levels of mangrove
productivity have been associated mainly with hydrological conditions, such as salinity levels, and the
concentration and composition of organic detritus from the mangrove forest (Magalhdes et al. 2011).
Zooplankton production in these environments contributes significantly to carbon transfer to higher trophic
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levels (Magalhdes et al. 2016) and consequently to fishery production (Rakhesh et al. 2008). However, the
number of studies investigating the productivity of Brazilian mangroves is still incipient, considering the
relevance of these environments in both economic and conservation terms.

Even with few studies, continental lakes were the second most productive environment, followed
by reservoirs (Figure 4). Continental aquatic environments have also been recognized for their high
productivity (Esteves et al. 2008) with values often overcoming surrounding terrestrial environments
(Hunter et al. 2017). Although globally they only contribute with 6 % of the planetary surface coverage,
continental aquatic environments play a key role in biogeochemical cycles, they are sources and sinks of
carbon and important buffers of the landscape hydrological variation (Junk et al. 2013). Lakes can have a
disproportionate contribution in relation to their areas (Biggs et al. 2017, Calhoun et al. 2017). Globally,
estimates have shown that inland aquatic environments can process twice as much carbon content annually
than that calculated as the contribution of large rivers and oceans (Downing 2010). Despite their importance,
productivity estimates for Brazilian continental aquatic environments are practically nonexistent (Bozelli
etal. 2018).

Continental shelf showed the highest values of secondary production among marine environments with
maximum value of 163.2 mg C m? day™' (Figure 4). The high productivity of the Brazilian continental shelf
is associated with the great abundance of species and small climatic seasonality (Lopes 2007; Dias et al.
2015). Some studies indicate that this region of the Atlantic Ocean has the highest production values on the
planet, exceeding global average (Ara 2001; Miyashita et al. 2009; Duarte et al. 2014). The large biomass
production on the continental shelf is associated with mechanisms of fertilization such as the discharge
of nutrients by large rivers and the upwelling of deep water (Lopes 2007; Duarte et al. 2014; Dias et al.
2015). The high zooplanktonic production on the continental shelf is very important for fishery production
in Brazil (Duarte et al. 2014). However, studies are still incipient and scarce, mainly in the north Brazilian
neritic section (Lopes 2007).

Surprisingly, estuaries and coral reefs, environments traditionally considered as the most productive in
the world (Crossland et al. 1991), presented low values of secondary production with a maximum value
of 0.1 mg C m* day™ (Figure 4). For example, a study conducted in coral reefs of the coast of Malaysia
found average values ranging from 0.93 to 1.83 mg C m* day' (Nakajima et al. 2014). In an estuary
located in Portugal, the average of zooplankton secondary production ranged from 0.03 to 0.13 mg C m?*
day' (Gongalves et al. 2015). Coral reefs and estuaries cover a small surface area in global terms, but
may account for more than 10 % of the world’s fishery production (Pauly et al. 2002). The low values
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found for the Brazilian environments may be associated with the small number of studies, resulting in low
temporal and spatial variability. Therefore, it is crucial to establish estimates of production rates at different
seasons and sampling sites for a real understanding of the ecological mechanisms that sustain the marine
food webs (Nakajima et al. 2014). In this sense, it is necessary to expand the studies developed in Brazil
mainly because the great variety, extension and complexity of the estuarine and reef environments along
the Brazilian coast.

Conclusions, recommendations and perspectives

The studies with zooplankton secondary production in Brazil have grown in recent years, however there
is a concentration of studies carried out in the southeast region, especially in reservoirs with descriptive
approaches. The methods used in the measurement of secondary production are diversified and there is no
standard method, but measures based on recruitment and biomass increment are the most used in freshwater
environments. In transitional and marine environments measures based on growth rates are largely applied.

Considering the importance of zooplankton secondary production for the real understanding of the
mechanisms of matter and energy transfer in trophic chains and their use in the management of aquatic
environments, we suggest that efforts should be made to increase the number of studies. Special attention
should be paid to environments that are historically neglected or at risk of degradation, such as small
wetlands and coral reefs. There is also a wide variety of aquatic environments in which this type of study
has not yet been performed and, in the face of a scenario of global changes and anthropic impacts (Caliman
et al. 2010; Junk et al. 2013; Hunter 2017), studies on the functioning of these ecosystems are paramount.
We suggest that further studies be carried out mainly in small ponds, marshes and coastal lagoons in central,
north and northeast of Brazil and in the continental shelf, estuaries and coral reefs along the entire coast.
However, efforts for the entire national territory for all types of environment must be considered since the
total number of studies is very low.

In general, we recommend that measures of secondary production be carried out for the whole
zooplankton community, allowing a more realistic view of the organism’s functional role. Both abundant
and rare species must be considered, since some studies have shown that the removal of species with
less than 10% of the community biomass, can cause disproportionate effects on the upper trophic levels
(Bracken and Low 2012). In addition, studies that use secondary production measures as indicators of
ecosystem processes coupled with measures of community functional diversity can allow us the appropriate
measurement of the biodiversity effects on ecosystem functioning (McGill et al. 2006).

There is still a lack of basic information on tropical environments. In this sense, basic studies on the
biology of organisms can be done addressing more complex issues, such as the effects of environmental
changes and human impacts on ecosystem productivity and the real contributions of aquatic environments
to biogeochemical global cycles.
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