تعداد نشریات | 418 |
تعداد شمارهها | 10,003 |
تعداد مقالات | 83,617 |
تعداد مشاهده مقاله | 78,290,809 |
تعداد دریافت فایل اصل مقاله | 55,345,309 |
A Generalized Thermo-Elastic Diffusion Problem in a Functionally Graded Rotating Media Using Fractional Order Theory | ||
Journal of Solid Mechanics | ||
مقاله 2، دوره 12، شماره 2، شهریور 2020، صفحه 263-277 اصل مقاله (746.51 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/jsm.2019.563701.1261 | ||
نویسندگان | ||
K Paul* ؛ B Mukhopadhyay | ||
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India | ||
چکیده | ||
A generalized thermo-elastic diffusion problem in a functionally graded isotropic, unbounded, rotating elastic medium due to a periodically varying heat source in the context of fractional order theory is considered in our present work. The governing equations of the theory for a functionally graded material with GNIII model are established. Analytical solution of the problem is derived in Laplace-Fourier transform domain. Finally, numerical inversions are used to show the effect of rotation, non-homogeneity and fractional parameter on stresses, displacement, chemical potential, mass distribution, temperature, etc. and those are illustrated graphically. | ||
کلیدواژهها | ||
Generalized thermo-elasticity؛ Thermo-elastic diffusion؛ Fractional order؛ Functionally graded material | ||
مراجع | ||
[1] Lord H.W., Shulman Y., 1967, A generalized dynamical theory of thermo-elasticity, Journal of the Mechanics and Physics of Solids 15(5) : 299-309. [2] Green A.E., Lindsay K.A., 1972, Thermo-elasticity, Journal of Elasticity 2(1): 1-7. [3] Green A.E., Naghdi P.M., 1991, A re-examination of the basic postulates of thermo-mechanics, Proceedings of the Royal Society of London A 432: 171-194. [4] Green A.E., Naghdi P.M., 1993, Thermoelasticity without energy dissipation, Journal of Elasticity 31(3): 189-208. [5] Green A.E., Naghdi P.M., 1992, On undamped heat waves in an elastic solid, Journal of Thermal Stresses 15(2): 253-264. [6] Sherief H.H., Hamza F.A., Saleh H.A., 2004, The theory of generalized thermoelastic diffusion, International Journal of Engineering Science 42: 591-608. [7] Elhagary M.A., 2011, Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times, Acta Mechanica 218: 205-215. [8] Aouadi M., 2006, A generalized thermo-elastic diffusion problem for an infinitely long solid cylinder, International Journal of Mathematics and Mathematical Sciences 206: 1-15. [9] Hetnarski R.B., Ignaczak J., 1994, Generalized thermoelasticity: response of semi-space to a short laser pulse, Journal of Thermal Stresses 17(3): 377-396. [10] Bagri A., Eslami M.R., 2004, Generalized coupled thermo-elasticity of disks based on the Lord-Shulman Model, Journal of Thermal Stresses 27(8): 691-704. [11] Kar A., Kanoria M., 2007, Thermo-elastic interaction with energy dissipation in an unbounded body with a spherical hole, International Journal of Solids and Structures 44(9): 2961-2971. [12] Sherief H.H., Anwar M.N., 1989, A problem in generalized thermo-elasticity for an infinitely long annular cylinder composed of two different materials, ActaMechanica 80: 137-149. [13] Sherief H.H., Hamza F.A., 1996, Generalized two-dimensional thermo-elastic problems in spherical regions under axisymmetric distributions, Journal of Thermal Stresses 19(1): 55-76. [14] Suresh S., Mortesen A., 1998, Fundamentals of Functionally Graded Materials, Institute of Material Communications Ltd., London. [15] Aboudi J., Pindera M.J., Arnold S.M., 1995, Thermo-inelastic response of functionally graded composites,International Journal of Solids and Structures 32(12): 1675-1710. [16] Wetherhold R.C., Wang J., Seelman S., 1996, The use of functionally graded materials to eliminate or control thermal deformation, Composites Science and Technology 56(6): 1099-1104. [17] Qian L.F., Batra R.C., 2004, Transient thermoelastic deformations of a thick functionally graded plate, Journal of Thermal Stresses 27(8): 705-740. [18] Shao Z.S., Wang T.J., Ang K.K., 2007, Transient thermo-mechanical analysis of functionally graded hollow circular cylinders, Journal of Thermal Stresses 30(1): 81-104. [19] Mallik S.H., Kanoria M., 2007, Generalized thermoelastic functionally graded solid with a periodically varying heat source, International Journal of Solids and Structures 44(22-23): 7633-7645. [20] Bagri A., Eslami M.R., 2007, A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders, Journal of Thermal Stresses 30(9-10): 911-930. [21] Ootao Y., Tanigawa Y., 2007, Transient thermoelastic problem of a functionally graded cylindrical panel due to nonuniform heat supply, Journal of Thermal Stresses 30(5): 441-457. [22] Kanoria M., Sur A., 2014, Fractional order generalized thermoelastic functionally graded solid with variable material properties, Journal of Solid Mechanics 6(1): 54-69. [23] Pal P., Das P., Kanoria M., 2015, Magneto-thermoelastic response in a functionally graded rotating medium due to a periodically varying heat source, Acta Mechanica 226(7): 2103-2120. [24] Nowacki W., 1974, Dynamical problems of thermo-diffusion in solids I, Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences Techniques 22: 55-64. [25] Nowacki W., 1974, Dynamical problems of thermo-diffusion in solids II, Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences Techniques 22: 129-135. [26] Nowacki W., 1974, Dynamical problems of thermo-diffusion in solids III, Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences Techniques 22: 257-266. [27] Nowacki W., 1974, Dynamical problems of thermo diffusion in elastic solids, Proceedings of Vibration Problems 15:105-128. [28] Singh B., 2005, Reflection of P and SV waves from free surface of an elastic solid with generalized thermo-Diffusion, Journal of Earth System Science 114(2): 159-168. [29] He T., Li C., 2014, Normal mode analysis to a two-dimensional generalized electromagnetothermoelastic problem with diffusion, Journal of Thermal Stresses 37(10): 1244-1263. [30] Aouadi M., 2008, Generalized theory of thermoelastic diffusion for anisotropic media, Journal of Thermal Stresses 31: 270-285. [31] Elhagary M.A., 2014, A two-dimensional generalized thermoelastic diffusion problem for a thick plate subjected to thermal loading due to laser pulse, Journal of Thermal Stresses 37: 1416-1432. [32] He T., Li C., Shi H., Ha Y., 2015, A two-dimensional generalized thermoelastic diffusion problem for a half–space, European Journal of Mechanics A/Solids 52: 37-43. [33] Amany M.E., 2016, A two-dimensional generalized thermoelastic diffusion for a half –space, Mathematics and Mechanics of Solids 21(9): 1045-1060. [34] Li C., Yu Y., Tian X., 2016, Effect of rotation on plane waves of generalized electromegneticthermoelastics with diffusion for a half-space, Journal of Thermal Stresses 39(1): 27-43. [35] Li C., Guo H., Tian X., 2017, A size-dependent generalized thermoelastic diffusion theory and its application, Journal of Thermal Stresses 40(5): 603-626. [36] Youssefa H.M., Al-Lehaibib E.A.N., 2018, Three-dimensional generalized thermoelastic diffusion and application for a thermoelastic half-space subjected to rectangular thermal pulse, Journal of Thermal Stresses 41(8): 1008-1021. [37] Paul K., Mukhopadhyay B., 2019, Two dimensional generalized megnetothermoelastic diffusion problem for a thick plate under laser pulse heating with three phase lag effect, Journal of Engineering Physics and Thermophysics 92(2): 516-527. [38] Bagley R. L., Torvik P. J., 1983, A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology 27(3): 201-210. [39] Rossikhin Yu A., Shitikova M.V., 1997, Applications of fractional calculus to dynamic problems of linear and nonlinear heredity mechanics of solids, Applied Mechanics Reviews 50(1): 15-67. [40] Muslih S.I., Baleanu D., 2005, Hamiltonian formulation of systems with linear velocities within riemann–liouville fractional derivatives, Journal of Mathematical Analysis and Applications 304(2): 599-606. [41] Podlubny I., 1999, Fractional Differential Equations, Academic Press, New York. [42] Povstenko Y.Z., 2005, Fractional heat conduction equation and associated thermal stresses, Journal of Thermal Stresses 28(1): 83-102. [43] Sherief H.H., El-Sayed A.M.A., Abd El-Latief A.M., 2010, Fractional order theory of thermoelasticity, International Journal of Solids and Structures 47(2): 269-273. [44] Youssef H.Y., 2010, Theory of fractional order generalized Thermoelasticity, Transaction of the American Society of Mechanical Engineers-Journal of Applied Mechanics 132(6): 1-7. [45] Ezzat M.A., 2010, Thermoelectric MHD non-newtonian fluid with fractional derivative heat transfer, Physica B: Condensed Matter 405(19): 4188-4194. [46] Ezzat M.A., 2011, Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer, Physica B: Condensed Matter 406(1): 30-35. [47] Jumarie G., 2010, Derivation and solutions of some fractional black scholes equations in coarsegrained space and time, Application to Merton’s optimal portfolio, Computers & Mathematics with Applications 59(3): 1142-1164. [48] Ezzat M.A., Mohsen A., 2011, Fractional order theory of thermoelastic diffusion, Journal of Thermal Stresses 34: 851-872. [49] Pal P., Sur A., Kanoria M.,2015, Thermo-viscoelastic interaction subjected to fractional fourier law with three phase lag effects, Journal of Solid Mechanics 7(4): 400-415. [50] Abbas I.A., 2015, Eigen value approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity, Applied Mathematical Modelling 39: 6196-6206. [51] Honig G., Hirdes U., 1984, A method for the numerical inversion of the Laplace transform, Journal of Computational and Applied Mathematics 10(1): 113-132. [52] Sinha M., Bera R.K., 2003, Eigenvalue approach to study the effect of rotation and relaxation time in generalizedthermoelasticity, Computers & Mathematics with Applications 46: 783-792. [53] Roychoudhuri S.K., 1985, Effect of rotation and relaxation times on plane waves in generalized Thermoelasticity, Journal of Elasticity 15(1): 59-68. [54] Salgado B.F.M., Sampayo R.R., Hernandez A.T., Fuentes C., 2017, Application of Fractional Calculus to Oil Industry, The world’s Leading Publisher of Open Access Books, Built by Scientists. [55] Hamza F., Abdou M., Abd El-Latief A.M., 2014, Generalized fractional thermoelasticity associate with two relaxation times, Journal of Thermal Stresses 37(9): 1080-1098. | ||
آمار تعداد مشاهده مقاله: 394 تعداد دریافت فایل اصل مقاله: 336 |