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  INTRODUCTION 
Using genomic selection is rapidly growing in the breeding 
programs of many livestock species, especially dairy cattle, 
with a large population size (Boison et al. 2017). The po-
tential factors, which have influences on the genetic re-
sponse, would also affect the genomic selection efficiency. 

Selecting animals with superior quality to serve as the 
next generation parents can be conducted in their early life 
or even in the embryogenesis throughout the genomic in-
formation, which could largely reduce the generation inter-
val in comparison with the traditional methods. In addition, 
many young animals can be evaluated theoretically and 
consequently could introduce a larger number of potential 

 

In order to have successful application of genomic selection, reference population and marker density 
should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breed-
ing values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, 
when different scenarios were applied about the reference populations selecting. After simulating the his-
torical (undergoing drift and mutation) and recent (undergoing selection) population structures, 800 indi-
viduals were remained in reference population. Three scenarios were considered for reducing the reference 
population number including: 1) 400 individuals which had the highest relationships with the validation set, 
2) 400 individuals which had the highest inbreeding, and 3) 400 selected individuals by random. The ge-
nomic breeding values were predicted for traits with two heritability levels (0.25 and 0.5) using best linear 
unbiased prediction (BLUP) with different markers and pedigree information combinations of included 
pedigree-based BLUP (ABLUP), which was used a numerator relationships matrix (A) only, genomic best 
linear unbiased prediction (GBLUP) which was used a genomic relationship matrix (G) only, and 
BLUP|GA, which combined both A and G by using a weight parameter (). By increasing , the prediction 
model was changed from GBLUP (=0) to ABLUP (=1). The results indicated that without considering 
the panel density effects, G matrix (=0) and A matrix (=1) usages had the highest and lowest prediction 
accuracy, respectively. Comparative analyses of different scenarios of reference population selection re-
vealed that all individuals’ inclusion in reference population yielded the highest estimation accuracy for 
breeding values (P<0.05). On the contrary, using reduced single nucleotide polymorphism (SNP) panels 
considerably decreased the accuracy of breeding value prediction. Individuals selecting in the reference set 
with a high genetic relationship to target animals, considerably improved the reduction in genomic predic-
tion accuracy because of small reference population size.  
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candidates that causes to increase the selection and genetic 
gain intensity. In various species of livestock there is em-
pirical evidence of increased rates of genetic gain from the 
use of genomic selection to target different aspects of the 
breeder’s equation. Accurate predictions of genomic breed-
ing value are central to this and the design of training sets is 
in turn central to achieving sufficient levels of accuracy. 

Questions about how the genotyped population should be 
structured and which animals should be used in the training 
population are still a matter of debate in all species 
(Lourenco et al. 2015). In this study, for the first time, the 
effects of different population scenarios (using all individu-
als, randomly selected and references with high inbreeding 
or high relationship with validation population) in the vari-
ous marker densities were studied using pedigree-based 
BLUP (ABLUP), GBLUP and BLUP|GA models.   

Following completion of the bovine genome sequencing 
project, thousands SNP markers were identified and the 
relevant research advances were accelerated. By the DNA 
chips availability commercially and their cost-effective 
feature, it is possible to estimate the breeding values with a 
high accuracy (Boichard et al. 2016).  

Detection of QTLs with small effect is feasible using the 
marker dense panel, and makes a real improvement in the 
true additive relationships calculation between relatives, 
which resulted in more accurate genetic merits estimations. 
It is also possible to categorize SNP effects into direct, indi-
rect, and total SNP effects (Momen et al. 2018). Although, 
the genomic selection accuracy depends on linkage disequi-
librium (LD) between SNPs, but the moderate to high-
density arrays could often provide enough LD between 
marker and QTL, which influences the interested traits 
(Calus et al. 2008).  

The genomic selection accuracy depends on several fac-
tors like the reference population size and structure, SNP 
markers map density, heritability of a trait, dependent vari-
able quality, genomic information, genetic relationship be-
tween reference and validation populations, LD between 
marker and QTL, effective population size and also epige-
netic effects (Habier et al. 2007; Calus et al. 2008; Solberg 
et al. 2008; Meuwissen et al. 2009; Amiri Roudbar et al. 
2017; Amiri Roudbar et al. 2018).  

Habier et al. (2007) established that the genomic selec-
tion uses the genomic relations between individuals and the 
LD between marker and QTL, in order to improve the ge-
nomic accuracy. Hayes et al. (2009a) reported that some 
factors like the heritability of a trait, genotyped animals’ 
number with phenotypic records in reference population, 
validation population size, assumed statistical distribution 
type for the QTL effects, and the effective population size 
could influence the accuracy of genomic estimated breeding 
value (GEBV).  

Daetwyler et al. (2008) indicated that the number of phe-
notypic records and the heritability of a trait effectively 
could influence the GEBV accuracy. They reported that for 
some traits, which had a low heritability, a large number of 
phenotypes were required in order to estimate the markers' 
effects.  

Generating a proper reference population plays a crucial 
role in the genomic selection programs and it could largely 
influence the GEBV accuracy in the young animals and 
also those animals without phenotypic record in the second 
selection step. There are several factors in the reference 
population that have influence on the prediction accuracy 
like the number of animals in this population and their type 
according to their gender (Van Raden et al. 2009), the ani-
mals' phenotypic information reliability, the genetic rela-
tionships of the reference population and the associations 
between reference population with validation population 
(Lund et al. 2010). Clark et al. (2012) demonstrated that 
one of the effective factors on genomic selection accuracy 
is identified as the relationship between the reference and 
validation populations, and the increasing the relationship 
between two populations from 0.125 to 0.25 using the 
GBLUP model, could result in increase of the genomic se-
lection accuracy from 0.41 to 0.57. The genetic relationship 
between the reference population and the validation popula-
tion shows significant effects on the accuracy for genomic 
prediction. Therefore, it is very important to optimize the 
design of the reference population when applying genomic 
selection to animal breeding (Wang et al. 2017).  

Teimourian et al. (2015) performed the various aspects of 
genomic selection and estimations accuracy in Holstein 
population of Iran. The production of an appropriate refer-
ence population including male and females combination 
along with using other populations’ information would re-
sult in the estimations accuracy increasing. Estimating the 
marker effects in these kinds of conditions requires using a 
high marker density and also applying appropriate analysis 
models.  

Vitezica et al. (2011) demonstrated that in the various 
heritability scenarios 0.05, 0.3 and 0.5 the estimated breed-
ing values (BLUP) accuracy is lower in the traditional 
method in comparison with the genomic methods. Accord-
ing to the studies accomplished by Su et al. (2012), the 
GEBV accuracy is higher in comparison with the traditional 
pedigree-based method.  

This research purpose was to comparing the GEBV accu-
racy in the different marker densities including low (5k), 
intermediate (50k) and high (777k) in simulated popula-
tions under various strategies, in order to select the different 
reference population by the use of the BLUP models with 
different genomic and pedigree information combination 
under low and high heritability.  
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  MATERIALS AND METHODS 
Population and genome simulations 
The QMSim software was applied in order to generate the 
population structures (Sargolzaei and Schenkel, 2009). In 
the first simulation step, a historical population was gener-
ated included 500 animals (250 males and 250 females) as 
founders, in order to produce the initial LD between mark-
ers and QTL and to establish the mutation–drift equilib-
rium. In this population, it was assumed that only two evo-
lutionary forces of mutation and drift have influences on the 
genes frequency variations; therefore, the selection and 
mating processes were performed randomly. This popula-
tion structure continued up to 1000 generations in order to 
establish the essential LD between markers and QTLs. Af-
ter that, 1000 generations were simulated with a population 
size gradual increase to 4000 animals. 50 males were con-
sidered in the last generation of the historical population. 
As a next step, 20 males and 200 females were randomly 
selected from the last generation, and recent population was 
generated during 10 randomly mated generations. The mat-
ing system process was based on the gametes random com-
bination.  

The genotype, phenotype and pedigree information that 
were associated to the generations were recorded as 8, 9 
and 10, respectively. The generations 8 and 9 were selected 
as the reference set and the generation 10 was selected as a 
validation set.  

A genome consisting of 29 autosomes pairs were simu-
lated with different length and similar to the bovine chro-
mosomes size. After that, the number of 777026 bi-allelic 
SNP markers and 725 bi-allelic QTL with the initial allele 
frequency equal to 0.5 and evenly spaced were simulated 
on the genome. QTL allele effects were sampled from a 
Gamma distribution with 0.4 shape parameter. Table 1 dis-
plays those parameters used for simulating.  

In the quality control step, SNPs with less than 0.01 mi-
nor allele frequency (MAF) and monomorphic loci were 
deleted. In this step, 369091 SNPs were deleted, and 
407935 SNPs with the known and specified loci on the 
autosomal chromosomes were left for further analysis. Af-
ter that, 5k and 50k densities panels by the use of the C 
programming language were retrieved from the genotype 
file.  
 
Reference population selection 
In the first scenario, all of 800 individuals of the reference 
population were used. Different scenarios were considered 
in order to reduce the reference population size to 400 indi-
viduals in the various marker densities as followings: 1) 
animals that had the highest relationship with the validation 
set, 2) those animals with the highest inbreeding, and 3) the 
randomly selected animals.  

Prediction methods 
Pedigree-based BLUP (ABLUP) method: In ABLUP 
model, the numerator relationships matrix (A) was calcu-
lated due to the pedigree information using the individuals' 
relationship average. It is very probable that the related 
animals were selected and along with that, inbreeding in-
creases.  
Additionally, these estimates accuracy is partly in accor-
dance with the pedigree's accuracy and quality (Calus, 
2010). The estimated breeding values (EBVs) were derived 
from a linear model as followings: 
 
y= 1µ + Za + e                                                            (1) 
 
Where:  
y: vector of interest phenotype.  
1: vector of 1.  
µ: average population.  
a and e: breeding values and residual effects vectors, re-
spectively.  
Z: design matrix for the random effects.  
 

Henderson’s mixed-model equations (Henderson, 1984) 
for estimating the breeding values are as equation (2): 
 
 
 
 
 
Where:  
α: error variance to additive variance ratio. 
 

Genotype-based BLUP (GBLUP) method: In GBLUP, 
the relationship matrix was calculated in terms of the 
marker genotypes after applying a series of appropriate 
algebraic operations like changing the scale and weighting 
the genotypes in the BLUP standard framework. The ge-
nomic relationship matrix (G) tends to measure an actual 
section of the common alleles between individuals, not to 
measure an expected section like pedigree-based relation-
ship matrix.  

In G, the individuals with the same genotype for a large 
number of markers have more genetically similarities, and 
also have a large value in their correspondent location of 
the genomic matrix. Here, the G was created and calculated 
for the different scenarios using the Van Raden's model, as 
followings (Van Raden, 2008): 

 
 
                                                                                       (3) 
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Where:  
M: genotypes matrix (codes -1 and 1 for homozygotes and 
code 0 for heterozygotes). 
P: minor allelic frequency (MAF) matrix and pi shows the 
MAF for ith marker. 
Q: stands for a matrix, which was obtained from P and M 
subtraction.  
 

The GEBVs were estimated from a linear model, as fol-
lowings: 
 
y= 1µ + Zg + e                                                            (4) 
 
Where:  

g: genomic effects vector, assumed . Here, 

σ2
g is the additive genomic variance.  

 
Integrating genomic and pedigree information in BLUP 

(BLUP|GA): BLUP|GA was used for the markers and pedi-
gree information integration in order to evaluate the GEBV 
accuracy by the use of the different marker densities and 
various reference population subsets under two heritabili-
ties as 0.25 and 0.5. The genomic and pedigree information 
were used in the Kernel matrix (K) form. This matrix com-
bines the pedigree information (A) and the marker informa-
tion (G), as followings: 
 
K= λA + (1-λ)G                                                          (5) 
 
Where:  
λ: limited parameter, and can be ranged between 0 and 1. In 
this study, we chose λ equal to 0 (GBLUP), 0.1, 0.3, 0.5, 
and 1 (ABLUP).  
 

Prediction accuracy access  
The predicted accuracy was calculated by evaluating the 
Pearson’s correlation between the GEBV and the observed 
phenotype (y) by the use of the following equation (Hayes 
et al. 2009b): 
 

ρy, GEBV= σ(y, GEBV) / (σy σGEBV)                              (6) 
 

Where:  
σ(y, GEBV): covariance between y and GEBV.  
σy and σGEBV: standard deviation of y and GEBV, respec-
tively.  
 

The Duncan’s multiple range test (with α=0.05) was per-
formed for comparing the different scenarios effects on the 
GEBV accuracy including the reference subset selection, 
marker densities, heritability, and statistical methods. 

 

  RESULTS AND DISCUSSION 
Using all animals in the reference population 
The results of the GEBV and EBV accuracies are displayed 
in Table 2 in different scenarios using all of the animals in 
the reference population. The results indicated that by in-
creasing the SNPs number, also the accuracy would in-
crease. The accuracy of breeding values in 777K density 
were higher than 50K density and in 50K density were 
higher than 5K density. In the other words, the marker in-
terval reduction between them would lead to the accuracy 
increasing. This can be more possible because of an in-
crease of LD level between the markers and QTL or their 
fewer intervals that was improved for the QTL effects cap-
turing. As it was expected, the estimated accuracy in the 
low heritability (0.25) was significantly less in comparison 
with the accuracy in the high heritability (0.5) (P<0.05). 

Consequently, the accuracies of GEBV and EBV will in-
crease in the traits with a higher heritability, and as a result, 
more genetic gain will be obtained. The GBLUP model 

accuracy (where only the G matrix was used and  was 0) 

was higher than the other models with the more than zero . 
Due to the fact that even small errors in the pedigree can 
significantly affect the breeding value accuracy and conse-
quently the extent of genetic gain (Hayes et al. 2008), we 
demonstrated that using genomic relationship matrix, which 
was derived from the marker information, could be consid-
ered as more efficient in comparison with the methods that 
just used pedigree information. This could be mainly as a 
result of the inability of pedigree-based relationship matrix 
to register the Mendelian sampling effects. 
 
The reference population with the highest relatedness 
The results of the accuracy that was achieved by the use of 
the subset of the highly related reference populations in 

different density of SNP panels and also with various  and 
heritability are presented in Table 3. Similar to using all 
individuals in the reference population, also 777K density 
panel indicated the highest accuracy in comparison with 
other panels with lower density, the patterns of high marker 
density (777K), due to providing higher LD between SNP 
markers and QTL, yield more reliability in genomic predic-
tions. This increase in reliability may be due to the specific 
relations that do not provide enough accuracy when using 
lower density patterns (5K and 50K). In this scenario there 
were no significant differences in the accuracies of breed-
ing values prediction in 5K and 50K densities. This demon-
strates the more efficiency of related reference population 
scenario which can obtain accuracy similar to the higher 
densities (50K) through reducing costs of genotyping by 
using the lower densities (5K).  
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Table 1 Characteristics and parameters of the simulated population

Information of population simulation Population structure  

 Step 1  

Creating base population 
500[0]500[1000]4000[2000] Number of base population generations  

50 Number of males in the last base population generation  

 Step 2 

20 Number of males from base population  

200 Number of females from base population 

10 Number of generations  

10 Number of iterations 

0.25, 0.5 Heritability 

1 Phenotype variance 

Genome simulation information Genome structure 

29 Number of chromosomes  

26794 Number of markers (for each chromosome) 

Evenly Distribution of markers  

25 Number of QTL (for each chromosome) 

Random QTL distribution 

Table 2 The genomic estimated breeding value (GEBV) and estimated breeding value (EBV) accuracies using all individuals in the reference popula-
tion, with the different single nucleotide polymorphism (SNP) panel densities, the various  and the heritability 

  λ   

1 0.5 0.3 0.1 0 
Density Heritability 

0.2043b 

(0.037) 

0.2420a 

(0.011) 

0.2518a 

(0.005) 

0.2519a 

(0.002) 

0.2567a 

(0.01) 
777K  

0.1979b 

(0.041) 

0.2381a 

(0.01) 

0.2430a 

(0.007) 

0.2433a 

(0.009) 

0.2433a 

(0.007) 
50K 0.25 

0.1916b 

(0.194) 

0.2333a 

(0.006) 

0.2373a 

(0.002) 

0.2376a 

(0.001) 

0.2384a 

(0.001) 
5K  

0.3527e 

(0.07) 

0.4166bc 

(0.067) 

0.4269bcd 

(0.102) 

0.4339bc 

(0.061) 

0.4358ab 

(0.066) 
777K  

0.340cde 

(0.076) 

0.4033bcde 

(0.07) 

0.4133bc 

(0.062) 

0.4211a 

(0.08) 

0.4216bc 

(0.049) 
50K 0.5 

0.3290de 

(0.073) 

0.3843bcde 

(0.046) 

0.3945bc 

(0.055) 

0.3995cde 

(0.10) 

0.3999bcde 

(0.055) 
5K  

The means within the same column with at least one common letter, do not have significant difference (P>0.05). 

Table 3 The genomic estimated breeding value (GEBV) and estimated breeding value (EBV) accuracies using the 400 highly related individuals in 
the reference population, with the different single nucleotide polymorphism (SNP) panel densities, the various  and the heritability 

  λ   

1 0.5 0.3 0.1 0 
Density Heritability 

0.1978d 

(0.031) 

0.2220ab 

(0.018) 

0.2263abc 

(0.028) 

0.2268ab 

(0.016) 

0.2274a 

(0.019) 
777K  

0.1877bcd 

(0.033) 

0.2144abc 

(0.019) 

0.2167abc 

(0.016) 

0.2180ab 

(0.016) 

0.2189abc 

(0.014) 
50K 0.25 

0.1928cd 

(0.042) 

0.2183abc 

(0.023) 

0.2195a 

(0.025) 

0.2190abcd 

(0.044) 

0.2210abcd 

(0.024) 
5K  

0.3554a 

(0.067) 

0.3919a 

(0.074) 

0.3939a 

(0.115) 

0.3999a 

(0.074) 

0.4056a 

(0.074) 
777K  

0.3335a 

(0.072) 

0.3675a 

(0.077) 

0.3719a 

(0.069) 

0.3756a 

(0.072) 

0.3771a 

(0.055) 
50K 0.5 

0.3349a 

(0.072) 

0.3727a 

(0.053) 

0.3781a 

(0.057) 

0.3790a 

(0.107) 

0.3801a 

(0.059) 
5K  

The means within the same column with at least one common letter, do not have significant difference (P>0.05). 
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Using G or A matrix in traits with lower heritability can 
result in a significant difference between methods. For in-
stance, ABLUP showed significant lower accuracy com-
pared to those methods that were used genomic information 
(GBLUP and BLUP|GA). In high heritability, it seems that 
using A matrix is sufficient for reaching to proper accuracy.  
 
Selecting of a subset of the reference population with 
the highest inbreeding 
Table 4 shows the results of estimating the accuracy of 
breeding values in different densities of 5K, 50K and 777K 

with the various weighting coefficients of (=0, 0.1, 0.3, 
0.5, 1) in the selection scenario of inbreeding reference 
population. 

Similar to other methods of reference set selecting, Table 
4 indicates that G matrix can make a better accuracy, espe-
cially in a low heritability. Selection of the reference popu-
lation in terms of the inbreeding, indicated a significant 
accuracy reduction in comparison with the subset selection 
of the reference population, regarding the relatedness 
(P<0.05). This demonstrated that the selection of a refer-
ence population by the use of inbreeding was not an appro-
priate approach for decreasing the genotyped animals' 
number.  
 
Randomly selected reference population 
The accuracy results of the randomly selected reference 
population under different scenarios are presented in Table 
5. The accuracy in this reference population subset was 
significantly lower than those references that were selected 
using relatedness (P<0.05). However, there was observed 
no significant difference between inbred and randomly se-
lected reference population. 

This research results indicated that the prediction accu-
racy of the studied models (GBLUP, ABLUP and 
BLUP|GA) had a similar pattern in the all scenarios, as the 
accuracies in the GBLUP model, it means that when the 

matrix G was just used (=0), were higher than the  more 

than zero. In the BLUP|GA model, by the  increasing, that 
is, the increase of using pedigree information in order to 
create the relationship matrix, the breeding value accuracies 

decreased, especially when  in the ABLUP model was 
equal to one.  

The main advantage of GBLUP method over the pedi-
gree-based evaluation (ABLUP) is that the pedigree infor-
mation (pedigree depth and quality) is one of the key fac-
tors for the breeding values estimation in the classic evalua-
tion. While in the GBLUP method, the genomic informa-
tion can be applied in order to determine the exact genetic 
relationships between animals (Silva et al. 2014). 

The range of errors in the pedigree registering has earlier 
been reported between 5 to 22%, but in recent years, be-

cause of using modern registering systems of relatives' in-
formation, it has been reduced to 10%, approximately.  

This error can decrease the genetic gain between 2 to 
12%, and there might be an increase in hidden inbreeding 
caused by some errors in the pedigree (Silva et al. 2014). 
GBLUP uses the genomic relationship matrix instead of the 
classic relationship matrix that was obtained from the mo-
lecular information. In the genomic relationship matrix, the 
individuals with the same genotype are genetically more 
similar for a large number of markers, and have a larger 
value in their correspondent locus in the genomic matrix. In 
general, in the genomic selection methods (GBLUP), the 
accuracy of genomic is higher by considering the ability of 
Mendelian sampling estimation in comparison with the 
ABLUP method (Van Raden, 2008).  

In a simulation study, Villumsen et al. (2009) performed 
that using genomic relationship matrix is more efficient 
than using the predicted relationship matrix for calculating 
the breeding value accuracy, because the pedigree-based 
relationship matrix has no ability for registering the Mende-
lian sampling effects, while the relationship marker matrix 
is able to calculate this effect. These findings are consistent 
with this study results.  

By including 20 individuals from the close relatives of 
training population in the reference population, Clark et al. 
(2012) attained the prediction accuracy as 0.57 by the use 
of the genomic relationship matrix (G) for the trait with the 
0.3 heritability. Pedigree-based prediction accuracy for the 
close relatives was less (accuracy of 0.42 with 10 pedigree 
generations) in comparison with the genomic relations. 
There was a lower genomic prediction accuracy for those 
animals with intermediate association (0.41), but BLUP 
method showed much lower accuracy (0.21 with 10 pedi-
gree generations) by the use of the pedigree. For the unre-
lated group, the pedigree method presented a very low and 
close to zero accuracy (accuracy of 0.04 with 10 pedigree 
generations), but GBLUP still showed an acceptable accu-
racy (0.34).  

Su et al. (2012) demonstrated that the levels of breeding 
value accuracy were 35.8, 45.4 and 36.6% for the traits of 
milk production, fat and protein percent in GBLUP method, 
respectively, and also were 19.4, 25.1 and 19.9% in the 
pedigree-based traditional method, respectively. Therefore, 
GBLUP accuracy level was about 0.1 higher than the tradi-
tional method, and this was in agreement with this research 
results. 

The range of genomic prediction accuracy in the dairy 
cattle in the developed countries has been reported from 0.5 
to 0.85 for the traits with intermediate to high heritability 
such as milk production and for the traits with low herita-
bility such as reproductive and survival traits from 0.2 to 
0.5 (Wiggans et al. 2017).  
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While the accuracy of genomic predictions in the devel-

oping countries has been reported from low to intermediate 
and in the range of 0.21-0.6 (Mrode et al. 2019), that is 
consistent with the results of present research. The lower 
accuracy of genomic breeding values in the developing 
countries can be due to the smaller size of reference popula-
tions and a lower accuracy of phenotypic data than the 
proven bulls in the developed countries as well as lack of 
appropriate breeding programs in these countries (Mrode et 
al. 2019). 

Heritability is considered as one of the effective factors 
on the accuracy of genomic breeding values estimations, 
and it was known as a factor that researcher is not able to 
control it. Since the trait heritability reduction causes dra-
matically reduction in the accuracy of genomic breeding 
values prediction, one can resolve this deficiency by in-
creasing the animals' number in the reference population or 
along with the marker density increasing. The high herita-
bility of a trait demonstrates that the environmental factors 
in creating diversity are less effective, in comparison with 
the genetic factors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 The genomic estimated breeding value (GEBV) and estimated breeding value (EBV) accuracies using the 400 individuals with the highest 
inbreeding in the reference population, with the different single nucleotide polymorphism (SNP) panel densities, the various  and the heritability 

    λ 
Heritability Density 

0 0.1 0.3 0.5 1 

0.1695a 0.1682a 0.1657a 0.1598a 0.1206b 
 777K 

(0.018) (0.017) (0.031) (0.02) (0.036) 

0.1699a 0.1675a 0.1662a 0.1610a 0.1232b 
0.25 50K 

(0.01) (0.014) (0.015) (0.02) (0.039) 

0.1656a 0.1655a 0.1596a 0.1506a 0.1007b 
 5K 

(0.016) (0.03) (0.019) (0.022) (0.053) 

0.3712a 0.3681abcd 0.3644abcd 0.3550a 0.2961bd 
 777K 

(0.066) (0.078) (0.69) (0.115) (0.103) 

0.3758abc 0.3726abc 0.3692abcd 0.3608abcd 0.3035abcd 
0.5 50K 

(0.052) (0.07) (0.07) (0.082) (0.12) 

0.3194abcd 0.3158abcd 0.3126ab 0.301abcd 0.2341acd 
 5K 

(0.062) (0.059) (0.111) (0.063) (0.119) 
The means within the same column with at least one common letter, do not have significant difference (P>0.05). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

  

Table 5 The genomic estimated breeding value (GEBV) and estimated breeding value (EBV) accuracies using the 400 randomly selected individuals 
from the reference population, with the different single nucleotide polymorphism (SNP) panel densities, various  and the heritability 

    λ 
Heritability Density 

0 0.1 0.3 0.5 1 

0.2099a 0.2082a 0.2102a 0.2079a 0.1774cd 
 777K 

(0.01) (0.012) (0.054) (0.01) (0.009) 

0.2092a 0.2085a 0.2073a 0.207ab 0.1797abcd 
0.25 50K 

(0.012) (0.016) (0.013) (0.059) (0.002) 

0.2093abcd 0.2084abcd 0.2075a 0.2072ab 0.1865bd 
 5K 

(0.031) (0.016) (0.017) (0.057) (0.015) 

0.3635a 0.3622ab 0.3797ab 0.3535a 0.3100ab 
 777K 

(0.074) (0.083) (0.125) (0.081) (0.086) 

0.3698ab 0.3676ab 0.3562ab 0.3587ab 0.3111ab 
0.5 50K 

(0.063) (0.082) (0.078) (0.088) (0.088) 

0.378ab 0.3679ab 0.3760ab 0.3711ab 0.3112ab 
 5K 

(0.061) (0.113) (0.062) (0.057) (0.085) 
The means within the same column with at least one common letter, do not have significant difference (P>0.05). 

Reducing the environmental factors effects on the trait's 
phenotypic value would result in decreasing the error vari-
ance of model and consequently increasing the accuracy of 
genomic breeding values prediction. It has been indicated 
that there is a higher breeding value prediction accuracy 
and genetic gain in the traits with a high heritability (De los 
Campos et al. 2013). The comparison between estimated 
accuracies shown in Tables 2 to 5, indicated that in all sce-
narios, the accuracy of genomic breeding values estimation 
in the higher heritability (0.5) was more than the lower 
heritability (0.25). 

The number of animals in the reference population is one 
of the key tools for the genomic selection. Because this 
factor can affect the accuracy of allelic effects estimations, 
and consequently the genetic gain level. In this study, the 
prediction accuracy was the highest at the time that all 
available animals were considered as the reference popula-
tion.  

Perez-Cabal et al. (2012) described that increasing the re-
lationships between the reference population and validation 
population would cause the increase of the genomic selec-
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tion accuracy, which is in agreement with this study results. 
By reducing the number of the reference population, select-
ing the subset according to the highest relatedness indicated 
the highest accuracy, in comparison with the subset selec-
tion according to inbreeding and random.  

Solberg et al. (2008) investigated the effect of marker 
density on the genomic selection accuracy. They reported 
that the increase of marker density could cause increasing 
in the accuracy of genomic selection, which was consistent 
with this study results. Since the higher density of markers 
leads to the genotyping costs increase, breeders are search-
ing for the cost-effective methods for genetic improvement; 
low-density panels could be considered as more effective if 
they give the accuracy similar to the high-density panels. 
This research results showed that there was not a significant 
difference between high and intermediate panels when all 
possible animals in reference population were used. There-
fore, it is suggested to using an intermediate panel for the 
traits with heritability ranged from 0.25 to 0.5. 

  

  CONCLUSION 
In this research, the accuracy of gnomic breeding values 
was studied in the different marker densities and different 
combinations of G and A matrix, in terms of the various 
subsets of the reference populations. The results indicated 
that the use of G matrix played an important role in increas-
ing the accuracy of breeding value estimation, when higher 
weights were assigned to the marker-based relationship 
matrix, the prediction accuracies would increase in all sce-
narios. These results also indicated that the reference set 
composition plays an important role in the prediction accu-
racy. The larger reference sets and an increase in the mark-
ers density can lead to a higher accuracy of breeding values. 
The highest accuracy of breeding values prediction was 
obtained when all individuals of reference population were 
used and after that in the related reference population the 
accuracies were higher. In the scenario of inbred reference 
population, the accuracy of genomic breeding values in the 
different densities was estimated lower than the other sce-
narios, which it shows less efficiency of inbred reference 
population than the other scenarios. This study demon-
strated that when there is a high relationship between the 
reference population and the validation population; the 
markers could be used with a lower density in the genomic 
evaluation, and as a result achieving the genetic gain of 
interest. In the scenario of related reference population, the 
more relationship between the reference population and 
validation population increases the efficiency of using LD 
due to common haplotype blocks which are established 
between the related animals resulting from LD between 
markers and genes loci. Also, the higher relationships, due 
to sharing more haplotypes, play an important role in the 

results related to the accuracy of breeding values prediction. 
In conclusion, using the intermediate marker density and 
the reference individuals' subset with the highest relation-
ship, and consequently, applying a higher weighting on 
marker information for creating the relationship matrix can 
result in better genomic selection efficiency. 
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