
International Journal of

Mathematical Modelling & Computations

Vol. 10, No. 01, Winter 2020, 57- 75

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

S. Turhana,∗, M. Kuntb and İ. İşcana
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we reveal the new generalization of the definition of convexity that can reduce many order
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1. Introduction

Let f : I ⊂ R → R be a convex function defined on the interval I of real numbers
and a, b ∈ I with a < b. The following inequality

f

(
a+ b

2

)
⩽ 1

b− a

b∫
a

f(x)dx ⩽ f(a) + f(b)

2
(1)

holds. This double inequality is known in the literature as Hermite-Hadamard
integral inequality for convex functions. Note that some of the classical inequalities
for means can be derived from (1) for appropriate particular selections of the
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mapping f . Both inequalities hold in the reversed direction if f is concave. For
some results which generalize, improve and extend the inequalities (1) we refer the
reader to the recent papers (see [4, 8, 11, 12, 14, 15, 17, 18]).
For r ∈ R the power mean Mr(a, b) of order r of two positive numbers a and b

is defined by

Mr =Mr(a, b) =

{(
ar+br

2

)1/r
, r ≠ 0√

ab, r = 0
.

It is well-known that Mr(a, b) is continuous and strictly increasing with respect
to r ∈ R for fixed a, b > 0 with a ̸= b.

Let L = L (a, b) = (b − a)/ (ln b− ln a), I = I (a, b) = 1
e

(
aa/bb

)1/a−b
, A =

A (a, b) = (a+ b) /2, G = G (a, b) =
√
ab and H = H (a, b) = 2ab/(a + b) be the

logarithmic, identric, arithmetic, geometric, and harmonic means of two positive
real numbers a and b with a ̸= b, respectively. Then

min {a, b} < H (a, b) =M−1(a, b) < G (a, b) =M0(a, b) < L (a, b)

< I (a, b) < A (a, b) =M1(a, b) < max {a, b} .

Let M be the family of all mean values of two numbers in R+ = (0,∞) . Given
M,N ∈ M, we say that a function f : R+ → R+ is (M,N)-convex if f (M(x, y)) ⩽
N (f(x), f(y)) for all x, y ∈ R+. The concept of (M,N)-convexity has been studied
extensively in the literature from various points of view (see e.g. [2, 3, 5, 19]),
Let A (a, b; t) = ta+(1−t)b, G (a, b; t) = atb1−t, H (a, b; t) = ab/(ta+(1−t)b) and

Mp (a, b; t) = (tap + (1− t)bp)1/p be the weighted arithmetic, geometric, harmonic
, power of order p means of two positive real numbers a and b with a ̸= b for
t ∈ [0, 1] , respectively.
The most used class of means is quasi-arithmetic mean, which are associated to

a continuous and strictly monotonic function φ : I → R by the formula

Mφ(x, y) = φ−1

(
φ(x) + φ(y)

2

)
, for x, y ∈ I.

Weighted quasi-arithmetic mean is given by the formula

Mφ(x, y; t) = φ−1 (tφ(x) + (1− t)φ(y)) , for x, y ∈ I, t ∈ [0, 1] .

Here t ∈ (0, 1) and x < y always implies x < Mφ(x, y; t) < y. The function φ
is called Kolmogoroff-Naguma function of M. Of special interest are the power
means Mp on R+, defined by

φp(x) :=

{
xp, p ̸= 0
lnx, p = 0

.

For p = 1, we get the arithmetic mean A = M1, for p = 0, we get the geometric
mean G =M0 and for p = −1, we get the harmonic mean H =M−1.
For any two quasi-arithmetic means M,N ( with Kolmogoroff-Naguma function

φ,ψ defined on intervals I, J , respectively ), a function f : I → J can be called
(Mφ,Mψ)-convex if it satisfies

f(Mφ(x, y; t)) ⩽Mψ(f(x), f(y); t) (2)
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for all x, y ∈ I and t ∈ [0, 1] . If the inequality in (2), then f is said to be (Mφ,Mψ)-
concave. If ψ : R → R, ψ(x) = x, (i.e., Mψ(f(x), f(y); t) = A (a, b; t) ), then we
just say that f is MφA-convex.
Let f be a MφA-convex.
i) If we take φ : I ⊂ R → R, φ(x) = x, then MφA-convexity deduce usual

convexity.
ii) If we take φ : I ⊂ (0,∞) → R, φ(x) = lnx, then MφA-convexity deduce

GA-convexity. (see [20, 21])
iii) If we take φ : I ⊂ (0,∞) → R, φ(x) = x−1, then MφA-convexity deduce

Harmonically convexity. (see [13])
iv) If we take φ : I ⊂ (0,∞) → R, φ(x) = xp, p ∈ R\ {0} , then MφA-convexity

deduce p-convexity. (see [16]).
The theory of (Mφ,Mψ)-convex functions can be deduced from the theory of

usual convex functions.

Lemma 1.1 [1] If φ and ψ are two continuous and strictly monotonic functions
(on intervals I and J respectively) and ψ is increasing then a function f : I → J
is (Mφ,Mψ)-convex if and only if ψ ◦ f ◦φ−1 is convex on φ(I) in the usual sense.

There is a lot of works in this area. Lots of authors found out theorems and
corollary about convex, GA-convex and p-convex functions as follows:

Theorem 1.2 [? ] Let f : Io ⊂ R → R be a differentiable mapping on Io, a, b ∈ Io

with a < b. If |f ′| is convex on [a, b], then we have

∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f

(
a+ b

2

)∣∣∣∣∣∣ ⩽ b− a

8

[∣∣f ′(a)∣∣+ ∣∣f ′(b)∣∣] (3)

Theorem 1.3 [? ] Let f : Io ⊂ R → R be a differentiable mapping on Io, a, b ∈ Io

with a < b, and let p > 1. If the mapping |f ′|p/(p−1) is convex on [a, b], then we
have ∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f

(
a+ b

2

)∣∣∣∣∣∣ (4)

⩽ b− a

16

(
4

p+ 1

)1/p [(∣∣f ′(a)∣∣p/(p−1)
+ 3

∣∣f ′(b)∣∣p/(p−1)
)(p−1)/p

+
(
3
∣∣f ′(a)∣∣p/(p−1)

+
∣∣f ′(b)∣∣p/(p−1)

)(p−1)/p
]

Theorem 1.4 [? ] Let f : Io ⊂ R → R be a differentiable mapping on Io, a, b ∈ Io

with a < b and let p > 1. If the mapping |f ′|p/(p−1) is convex on [a, b], then we have

∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f

(
a+ b

2

)∣∣∣∣∣∣ ⩽
(
b− a

4

)(
4

p+ 1

)1/p [∣∣f ′(a)∣∣+ ∣∣f ′(b)∣∣] (5)

Lemma 1.5 Let f : I ⊆ R \ {0} → R be a differentiable function on Io and
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a, b ∈ Io with 0 < a < b. If f ′ ∈ L ([a, b]), then

1

lnb− lna

b∫
a

f(x)

x
dx− f

(√
ab
)

(6)

=
lnb− lna

4

1∫
0

t
[
at/2b1−t/2f ′

(
at/2b1−t/2

)
− a1−t/2bt/2f ′

(
a1−t/2bt/2

)]
dt.

Corollary 1.6 [10] Let f : I ⊆ R+ → R be a differentiable mapping on Io and
f ′ ∈ L[a, b] with a < b. If |f ′| is GA-convex on [a, b], then∣∣∣∣∣∣f (√ab)− 1

lnb− lna

b∫
a

f(x)

x
dx

∣∣∣∣∣∣ ⩽ ln

(
b

a

)[
C1(1)

∣∣f ′(a)∣∣+ C2(1)
∣∣f ′(b)∣∣] , (7)

where

C1(1) =

1

2∫
0

u
[
(1− u)(a1−ubu) + u(aub1−u)

]
du,

C2(1) =

1

2∫
0

u
[
u(a1−ubu) + (1− u)(aub1−u)

]
du.

Corollary 1.7 [10] Let f : I ⊂ R+ → R be a differentiable mapping on Io and
f ′ ∈ L[a, b] with a < b. If |f ′|q, q ⩾ 1, is GA-convex on [a, b], then the following
Hermite-Hadamard type inequality for GA-convex function is obtained∣∣∣∣∣∣f (√ab)− 1

lnb− lna

b∫
a

f(x)

x
dx

∣∣∣∣∣∣
⩽ lnb− lna

2
3
(
1− 1

q

) {[
C3(1)

∣∣f ′(a)∣∣q + C4(1)
∣∣f ′(b)∣∣q] 1

q +
[
C5(1)

∣∣f ′(a)∣∣q + C6(1)
∣∣f ′(b)∣∣q] 1

q

}
.

(8)

In this study, we have given the new generalization of the definition of convexity
that can reduce many order of convexity. First of all, we have revealed the identity.
By taking advantage of this identity, we have given theorems and corollaries for
MφA-convex functions. The studies on this article have scrutinised the relationships
with previous studies.

2. Main results

2.1 MφA convex functions

Definition 2.1 Let I be a interval, φ : I → R be a continuous and strictly
monotonic function. f : I → R is said to be MφA convex, if

f
(
φ−1 (tφ(x) + (1− t)φ(y))

)
⩽ tf(x) + (1− t)f(y) (9)
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for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (9) is reversed, then f is said to
be MφA-concave function.

Proposition 2.2

i i. For φ : I → R, φ (x) = mx+ n, m ∈ R \ {0}, n ∈ R, MφA-convexity reduces
to ordinary convexity on I.

ii ii. For φ : I → (0,∞), φ (x) = lnx, MφA-convexity reduces to ordinary GA-
convexity on I.

iii iii. For φ : I → (0,∞), φ (x) = x−1, MφA-convexity reduces to ordinary
harmonically convexity on I.

iv iv. For φ : I → (0,∞), φ (x) = xp, p ∈ R \ {0}, MφA-convexity reduces to
ordinary p- convexity on I.

Theorem 2.3 I ⊂ R is an interval, a, b ∈ I with a < b. If f : [a, b] → R be a
MφA-convex function on [a, b] and finite on [a, b], then it is bounded.

Proof Firs of all, a function MφA convex and finite on closed [a, b] is bounded
from above by M = max{f(a), f(b)}, since for any w = φ−1 (λφ(a) + (1− λ)φ(b))
in the interval,

f(w) ⩽ λf(a) + (1− λ)f(b) ⩽ λM + (1− λ)M =M.

It must be showed that this function is bounded from below. So we see by writing

an arbitrary in the form φ−1
(
φ(a)+φ(b)

2 + t
)
as follow:

f

(
φ−1

(
φ(a) + φ(b)

2

))
= f

(
φ−1

(
1

2
φ

(
φ−1

(
φ(a) + φ(b)

2
− t

))
+

1

2
φ

(
φ−1

(
φ(a) + φ(b)

2
+ t

))))
⩽ 1

2
f

(
φ−1

(
φ(a) + φ(b)

2
− t

))
+

1

2
f

(
φ−1

(
φ(a) + φ(b)

2
+ t

))

2f

(
φ−1

(
φ(a) + φ(b)

2

))
⩽ f

(
φ−1

(
φ(a) + φ(b)

2
− t

))
+ f

(
φ−1

(
φ(a) + φ(b)

2
+ t

))
f

(
φ−1

(
φ(a) + φ(b)

2
+ t

))
⩾ 2f

(
φ−1

(
φ(a) + φ(b)

2

))
− f

(
φ−1

(
φ(a) + φ(b)

2
− t

))
.

On the other hand it is known that

−f
(
φ−1

(
φ(a) + φ(b)

2
− t

))
⩾ −M. (10)

■

Theorem 2.4 If f : I → R be a MφA-convex, φ : I → φ(I) be continuous, strictly
monotonic function and φ satifies L-Lipschitz condition then f is a Lipschitzian
function on closed interval [a, b] with a < b contained in the interior Io of I.

Proof Firstly, we take φ function with strictly increasing function. Choose ϵ > 0
so that φ(a − ϵ) and φ(b + ϵ) belong to φ(I), and let m and M be the lower and
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upper bounds for f on [a− ϵ, b+ ϵ]. If x and y distinct points of [a, b], set

φ(z) =
|φ(y)− φ(x)|+ ϵ

|φ(y)− φ(x)|
φ(y)− ϵ

|φ(y)− φ(x)|
φ(x), λ =

|φ(y)− φ(x)|
ϵ+ |φ(y)− φ(x)|

then it is gotten

z ∈ [a− ϵ, b+ ϵ] , φ(y) = λφ(z) + (1− λ)φ(x),

and we have

f(y) = f
(
φ−1 (λφ(z) + (1− λ)φ(x))

)
⩽ λf(z) + (1− λ)f(x) = λ (f(z)− f(x)) + f(x)

f(y)− f(x) ⩽ λ (f(z)− f(x)) ⩽ λ (M −m)

=
|φ(y)− φ(x)|

ϵ+ |φ(y)− φ(x)|
(M −m)

⩽ L |y − x|
ϵ

(M −m)

⩽ K |y − x| , K :=
L(M −m)

ϵ

■

Theorem 2.5 Let I is an interval of R, φ : I → R be a continuous and strictly
increasing function. If f : I → R and g : I → R are MφA-convex functions and
α ⩾ 0, then f + g and αf are MφA-convex on I.

Proof Let function of f and g is a MφA-convex on [a, b] ⊂ I and a ⩽ b with
a, b ∈ R. We get, for λ ∈ (0, 1),

(f + g)
(
φ−1 (λφ(a) + (1− λ)φ(b))

)
= f

(
φ−1 (λφ(a) + (1− λ)φ(b))

)
+ g

(
φ−1 (λφ(a) + (1− λ)φ(b))

)
⩽ λf(a) + (1− λ)f(b) + λg(a) + (1− λ)g(b) = λ(f + g)(a) + (1− λ)(f + g)(b),

and λ ⩾ 0,

(λf)
(
φ−1 (λφ(a) + (1− λ)φ(b))

)
= αf

(
φ−1 (λφ(a) + (1− λ)φ(b))

)
⩽ α (λf(a) + (1− λ)f(b))

= λ (αf) (a) + (1− λ) (αf) (b)

■

Theorem 2.6 Let I be an interval of R and φ : I → R be a continuous, strictly
increasing function. If f, g : I → R are both nonnegative, decreasing (increasing)
and MφA-convex, then h(x) = f(x)g(x) also expose these properties.

Proof We begin by noting that for x < y,

[f(x)− f(y)] [g(y)− g(x)] ⩽ 0

which implies that

f(x)f(y) + f(y)g(x) ⩽ f(x)g(x) + f(y)g(y)
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an inequality we use blow. Now if α > 0,β > 0 and α+ β = 1,

f
(
φ−1 (αφ(x) + βφ(y))

)
g
(
φ−1 (αφ(x) + βφ(y))

)
⩽ (αf(x) + βf(y)) (αg(x) + βg(y))

= α2f(x)g(x) + αβ [f(x)g(y) + f(y)g(x)] + β2f(y)g(y)

⩽ α2f(x)g(x) + αβ [f(x)g(x) + f(y)g(y)] + β2f(y)g(y)

= αf(x)g(x) + βf(y)g(y).

■

Theorem 2.7 Let I is an interval. If f, g : I → R be a MφA-convex, a convex
function and φ : I → R is continuous and strictly increasing function, then g ◦ f
be a MφA-convex function.

Proof If we go out of hypothesis, then we get

(g ◦ f)
(
φ−1 (λφ(x) + (1− λ)φ(y))

)
= g

(
f
(
φ−1 (λφ(x) + (1− λ)φ(y))

))
⩽ g (λf(x) + (1− λ)f(y)) ⩽ λg (f(x)) + (1− λ)g (f(y))

= λ (g ◦ f) (x) + (1− λ) (g ◦ f) (y).

■

Theorem 2.8 Let fα : I → R be an arbitrary family of MφA-convex functions
and φ : J → φ{J} be a continuous, strictly increasing function and let f(z) =
supα fα(z). If J = {z ∈ I : f(z) <∞} is nonempty, then J is an interval and f is
MφA-convex on J .

Proof Firstly It is showed that J is an interval. So, we must proof that [x, y] ⊂ J
for ∀x, y ∈ J . Let x, y ∈ J and z ∈ [x, y] are arbitrary then there exist λ ∈ [0, 1]
such that

z = φ−1 (λφ(x) + (1− λ)φ(y)) ∈ [x, y] ⊂ J.

and since f(x), f(y) <∞ we have z ∈ J

f
(
φ−1 (λφ(x) + (1− λ)φ(y))

)
= sup

α
fα
(
φ−1 (λφ(x) + (1− λ)φ(y))

)
⩽ sup

α
[λfα(x) + (1− λ)fα(y)]

⩽ λ sup
α
fα(x) + (1− λ) sup

α
fα(y)

= λf(x) + (1− λ)f(y) <∞.

This simultaneously that J is an interval (since it contains every point between
any two of its points) and that f is MφA-convex on it. ■

Theorem 2.9 Let I is an interval and x1, x2, x3 ∈ I. φ : I → R be a continuous,
strictly monotonic function and f : I → R be a MφA-convex function.
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(1) If φ is an increasing function, then we get for x1 < x2 < x3∣∣∣∣∣∣
1 φ(x1) f(x1)
1 φ(x2) f(x2)
1 φ(x3) f(x3)

∣∣∣∣∣∣ ⩾ 0.

(2) If φ is an decreasing function, then we get for x1 < x2 < x3∣∣∣∣∣∣
1 φ(x3) f(x3)
1 φ(x2) f(x2)
1 φ(x1) f(x1)

∣∣∣∣∣∣ ⩾ 0.

Proof

(1) If it is determination that is amplified in case of first line and thirdly column,
we get∣∣∣∣∣∣

1 φ(x3) f(x3)
1 φ(x2) f(x2)
1 φ(x1) f(x1)

∣∣∣∣∣∣ (11)

= f(x1) (φ(x3)− φ(x2))− f(x2) (φ(x3)− φ(x1)) + f(x3) (φ(x2)− φ(x1))

On the other hand, from x1 < x2 < x3, φ is a strictly monotonic function
and f be a MφA-convex function, we get for t ∈ (0, 1)

x2 = φ−1 (tφ(x1) + (1− t)φ(x3)) (12)

f(x2) = f
(
φ−1 (tφ(x1) + (1− t)φ(x3))

)
⩽ tf(x1) + (1− t)f(x3). (13)

By using (12)-(13) in (11), it is gotten∣∣∣∣∣∣
1 φ(x3) f(x3)
1 φ(x2) f(x2)
1 φ(x1) f(x1)

∣∣∣∣∣∣ (14)

= f(x1) (φ(x3)− tφ(x1)− (1− t)φ(x3))− f(x2) (φ(x3)− φ(x1)) (15)

+f(x3) (tφ(x1) + (1− t)φ(x3)− φ(x1))

= (φ(x3)− φ(x1)) (tf(x1)− f(x2) + (1− t)f(x3)) ⩾ 0.

The proof is completed.
(2) It is be occured that this is proved the same as ((1)).

■

According to We have given definition of MφA-convexity as above. Presently, we
will establish a new lemma for MφA-convexity. Using this identity, we will give
new theorems and corollaries.
By benefiting the definition ofMφA-convex functions, we constitute the Hermite-

Hadamard inequality for this convexity as follow:

2.2 Hermite-Hadamard inequalities for MφA-convex

Theorem 2.10 Let f : I ⊂ (0,∞) → R be a MφA-convex function, φ : I → R be a
continuous and strictly monotonic function and a, b ∈ I with a < b. If f, φ′ ∈ L[a, b]
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the the following inequalities holds

f

(
φ−1

(
φ(a) + φ(b)

2

))
⩽ 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx ⩽ f(a) + f(b)

2
. (16)

The above inequlaties are sharp.

Proof Since f : I ⊂ (0,∞) → R be a MφA-convex function, we have, for all
x, y ∈ I, (with t = 1

2 in the inequality (9))

f

(
φ−1

(
φ(x) + φ(y)

2

))
⩽ f(x) + f(y)

2
.

Choosing x = φ−1 (tφ(a) + (1− t)φ(b)), y = φ−1 (tφ(b) + (1− t)φ(a)), we get

f

(
φ−1

(
φ(x) + φ(y)

2

))
⩽
f
(
φ−1 (tφ(a) + (1− t)φ(b))

)
+ f

(
φ−1 ((1− t)φ(a) + tφ(b))

)
2

By integrating for t ∈ [0, 1], we have

f

(
φ−1

(
φ(x) + φ(y)

2

))
(17)

⩽ 1

2

 1∫
0

f
(
φ−1 (tφ(a) + (1− t)φ(b))

)
dt+

1∫
0

f
(
φ−1 ((1− t)φ(a) + tφ(b))

)
dt


⩽ 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx.

We get the left hand side of the inequality (16). Furhermore, we observe that for
all t ∈ [0, 1]

f
(
φ−1 (tφ(a) + (1− t)φ(b))

)
⩽ tf(a) + (1− t)f(b).

By integrating this inequality with respect to t over [0, 1], we have the right-hand
side of the inequality (16). Let consider the function f : (0,∞) → R, f(x) = 1.
Thus

1 = f

(
φ−1

(
φ(a) + φ(b)

2

))
= tf(a) + (1− t)f(b) = 1

for all x, y ∈ I and t ∈ [0, 1]. Therefore f is MφA-convex on I. We also have

f

(
φ−1

(
φ(a) + φ(b)

2

))
= 1,

1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx = 1

f(a) + f(b)

2
= 1
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which reveals us the inequalities (16) are sharp. ■

Lemma 2.11 Let f : I ⊆ [0,∞) → R be a differentiable function on Io, φ : I → R
be a continuous and strictly monotonic function and a, b ∈ Io with 0 < a < b. If
f ′ ∈ L ([a, b]), then we get

f

(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx (18)

=
φ(b)− φ(a)

4

 1∫
0

t
(
φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
)

f ′
(
φ−1

((
1− t

2

)
φ(a) + t

2φ(b)
))
dt

−
1∫

0

t
(
φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

)
f ′
(
φ−1

(
t
2φ(a) +

(
1− t

2

)
φ(b)

))
dt

 .

Proof Firstly, we take the integral and calculating as follows

I2 =

1∫
0

t
(
φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
)

f ′
(
φ−1

((
1− t

2

)
φ(a) + t

2φ(b)
))dt (19)

= t
2

φ(b)− φ(a)
f

(
φ−1

((
1− t

2

)
φ(a) +

t

2
φ(b)

))∣∣∣∣1
0

− 2

φ(b)− φ(a)

1∫
0

f

(
φ−1

((
1− t

2

)
φ(a) +

t

2
φ(b)

))
dt

=
2

φ(b)− φ(a)
f

(
φ−1

(
φ(a) + φ(b)

2

))

− 2

φ(b)− φ(a)

1∫
0

f

(
φ−1

((
1− t

2

)
φ(a) +

t

2
φ(b)

))
dt.

Changing x = φ−1
((
1− t

2

)
φ(a) + t

2φ(b)
)
, we get

I2 =
2

φ(b)− φ(a)
f

(
φ−1

(
φ(a) + φ(b)

2

))
(20)

− 4

(φ(b)− φ(a))2

φ−1(φ(a)+φ(b)

2 )∫
a

f(x)φ′(x)dx.
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Calculating the other integral with the same method, we get

I1 =

1∫
0

t
(
φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

)
f ′
(
φ−1

(
t
2φ(a) +

(
1− t

2

)
φ(b)

))
dt

(21)

=
2

φ(a)− φ(b)
f

(
φ−1

(
φ(a) + φ(b)

2

))

− 4

(φ(a)− φ(b))2

φ−1(φ(a)+φ(b)

2 )∫
b

f(x)φ′(x)dx.

By summing I2 with −I1, we obtain (18). ■

In other words, the lemma we have obtained can be expressed as follows:

Remark 2.12

(1) If it is taken φ(x) = x in (18), then we get

f

(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

=
b− a

4

 1∫
0

tf ′
((

1− t

2

)
a+

t

2
b

)
dt−

1∫
0

tf ′
((

1− t

2

)
b+

t

2
a

)
dt

 .
(2) I it is taken φ(x) = lnx in (18), then we get [7, Lemma 2.1] as follow:

f
(√

(ab)
)
− 1

lnb− lna

b∫
a

f(x)

x
dx

=
lnb− lna

4

 1∫
0

ta1−
t

2 b
t

2 f ′
(
a1−

t

2 b
t

2

)
dt−

1∫
0

ta
t

2 b1−
t

2 f ′
(
a

t

2 b1−
t

2

)
dt

 .
(3) If it is taken φ(x) = 1

x in (18), then we get

f

(
a+ b

2ab

)
− ab

b− a

b∫
a

f(x)

x2
dx

=
b− a

4ab

 1∫
0

t
1(

1− t
2

)
1
a +

t
2
1
b

f ′

(
1(

1− t
2

)
1
a +

t
2
1
b

)
dt

−
1∫

0

t
1(

1− t
2

)
1
b +

t
2
1
a

f ′

(
1(

1− t
2

)
1
b +

t
2
1
a

)
dt

 .
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(4) If it is taken φ(x) = xp in (18), p ∈ R\ {0}, the we get

f

((
ap + bp

2

) 1

p

)
− p

bp − ap

b∫
a

f(x)

x1−p
dx

=
bp − ap

4p

 b∫
a

t
f ′
(((

1− t
2

)
ap + t

2b
p
) 1

p

)
((
1− t

2

)
ap + t

2b
p
)1− 1

p

dt−
1∫

0

t
f ′
(((

1− t
2

)
bp + t

2a
p
) 1

p

)
((
1− t

2

)
bp + t

2a
p
)1− 1

p

dt

 .

Remark 2.13 In ((1)) equation of Remark 2.12,if we use equation of
(
1− 1

t

)
a+

t
2b = (1− t)a+ t

(
a+b
2

)
in the first integration and we use the changing of variable

with −t = u− 1,dt = −du and equation of 1−u
2 a+ 1+u

2 b = ub+ (1− u)a+b2 in the
second integration, then we get [6, Lemma 2.1] as follow:

f

(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx (22)

=
b− a

4

 1∫
0

tf ′
(
t
a+ b

2
+ (1− t)a

)
dt+

1∫
0

(t− 1)f ′
(
tb+ (1− t)

a+ b

2

)
dt

 .

Theorem 2.14 f : I ⊆ [0,∞) → R be differentiable on Io and a, b ∈ Io with
a < b, φ : I → R be a continuous and strictly monotonic function such that
φ−1 : φ(Io) → Io is continuously differentiable functions. If |f ′| is a MφA-convex
functions, we have

∣∣∣∣∣∣f
(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx

∣∣∣∣∣∣ (23)

⩽ φ(b)− φ(a)

4

[
A1(t; a, b)

∣∣f ′(a)∣∣+A2(t; a, b)
∣∣f ′(b)∣∣]

where

A1(t; a, b) =

1∫
0

[ (
φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

)
t2

2

+
(
φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
) (
t− t2

2

)] dt,
A2(t; a, b) =

1∫
0

[(
φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

) (
t− t2

2

)
+
(
φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
)
t2

2

]
dt.
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Proof By using the MφA convexity of |f ′| on [a, b] in (18), we get

∣∣∣∣∣∣f
(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx

∣∣∣∣∣∣ (24)

⩽ φ(b)− φ(a)

4

 1∫
0

t
(
φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

)(
t
2 |f

′(a)|+
(
1− t

2

)
|f ′(b)|

)
dt

+

1∫
0

t
(
φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
)((

1− t
2

)
|f ′(a)|+ t

2 |f
′(b)|

)
dt


=
φ(b)− φ(a)

4

 1∫
0

(
φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

)(
t2

2 |f ′(a)|+
(
t− t2

2

)
|f ′(b)|

)
dt

+

1∫
0

(
φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
)((

t− t2

2

)
|f ′(a)|+ t2

2 |f ′(b)|
)
dt

 .
This proof is completed. ■

Corollary 2.15

i i. If we take φ(x) = mx+ n to (23), we get

∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ⩽ b− a

8

[∣∣f ′(a)∣∣+ ∣∣f ′(b)∣∣] (25)

ii ii. If we take φ(x) = lnx to (23), we get

∣∣∣∣∣∣f (√ab)− 1

lnb− lna

b∫
a

f(x)dx

∣∣∣∣∣∣ ⩽ lnb− lna

4

[
A1(t; a, b)

∣∣f ′(a)∣∣+A2(t; a, b)
∣∣f ′(b)∣∣]

(26)

where

A1(t; a, b) =

1∫
0

[
t2

2
a

t

2 b1−
t

2 +

(
t− t2

2

)
b

t

2a1−
t

2

]
dt

A2(t; a, b) =

1∫
0

[(
t− t2

2

)
a

t

2 b1−
t

2 +
t2

2
b

t

2a1−
t

2

]
dt
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iii iii. If we take φ(x) = x−1 to (23), we get

∣∣∣∣∣∣f
(

2ab

a+ b

)
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣ (27)

⩽ b− a

4ab

[
A1(t; a, b)

∣∣f ′(a)∣∣+A2(t; a, b)
∣∣f ′(b)∣∣]

where

A1(t; a, b) =

1∫
0

[
t2

2
(
t
2
1
a +

(
1− t

2

)
1
b

)2 . t− t2

2((
1− t

2

)
1
a +

t
2
1
b

)2
]
dt,

A2(t; a, b) =

1∫
0

[
t− t2

2

2
(
t
2
1
a +

(
1− t

2

)
1
b

)2 t2((
1− t

2

)
1
a +

t
2
1
b

)2
]
dt.

iv iv. If we take φ(x) = xp,p ∈ R \ {0}, to (23), we get

∣∣∣∣∣∣f
((

ap + bp

2

)1/p
)

− p

bp − ap

b∫
a

f(x)

x1−p
dx

∣∣∣∣∣∣ ⩽ bp − ap

4p

[
A1(t; a, b)

∣∣f ′(a)∣∣+A2(t; a, b)
∣∣f ′(b)∣∣]
(28)

where

A1(t; a, b) =

b∫
a

[(
t

2
ap +

(
1− t

2

)
bp
) 1

p
−1 t2

2
+

((
1− t

2

)
ap +

t

2
bp
) 1

p
−1(

t− t2

2

)]
dt

A2(t; a, b) =

b∫
a

[(
t

2
ap +

(
1− t

2

)
bp
) 1

p
−1(

t− t2

2

)
+
t2

2

((
1− t

2

)
ap +

t

2
bp
) 1

p
−1
]
dt

Theorem 2.16 Let f : I ⊆ [0,∞) → R be differentiable on Io and a, b ∈ Io

with a < b, φ : I → R be a continuous and strictly monotonic function such that
φ−1 : φ(Io) → Io is continuously differentiable functions. If |f ′|q, q > 1, 1

p +
1
q = 1

is MφA- convex function on [a, b] then we get

∣∣∣∣∣∣f
(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx

∣∣∣∣∣∣ (29)

⩽ φ(b)− φ(a)

4

{
(B1(t; a, b))

1/p

(
|f ′(a)|q + 3 |f ′(b)|q

4

)1/q

+ (B2(t; a, b))
1/p

(
3 |f ′(a)|q + |f ′(b)|q

4

)1/q
}



S. Turhan et al./ IJM2C, 10 - 01 (2020) 57-75. 71

where

B1(t; a, b) =

1∫
0

tp
∣∣∣∣(φ−1

)′( t
2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣p dt; (30)

B2(t; a, b) =

1∫
0

tp
∣∣∣∣(φ−1

)′((
1− t

2

)
φ(a) +

t

2
φ(b)

)∣∣∣∣p dt.
Proof By taking (18) equality with absolute value and using Hölder inequality,
we get

∣∣∣∣∣∣f
(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx

∣∣∣∣∣∣ (31)

⩽


(

1∫
0

tp
∣∣∣(φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣p dt)1/p

(
1∫
0

∣∣f ′ (φ−1
(
t
2φ(a) +

(
1− t

2

)
φ(b)

))∣∣q dt)1/q



+


(

1∫
0

tp
∣∣∣(φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
)∣∣∣p dt)1/p

(
1∫
0

∣∣f ′ (φ−1
((
1− t

2

)
φ(a) + t

2φ(b)
))∣∣q dt)1/q


Since |f ′|q is MφA-convex function, we have

∣∣∣∣∣∣f
(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx

∣∣∣∣∣∣ (32)

⩽


(

1∫
0

tp
∣∣∣(φ−1

)′ ( t
2φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣p dt)1/p

(
1∫
0

(
t
2 |f

′(a)|q +
(
1− t

2

)
|f ′(b)|q

)
dt

)1/q



+


(

1∫
0

tp
∣∣∣(φ−1

)′ ((
1− t

2

)
φ(a) + t

2φ(b)
)∣∣∣p dt)1/p

(
1∫
0

((
1− t

2

)
|f ′(a)|q + t

2 |f
′(b)|q

)
dt

)1/q



=

 1∫
0

tp
∣∣∣∣(φ−1

)′( t
2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣p dt
1/p(

|f ′(a)|q + 3 |f ′(b)|q

4

)1/q

+

 1∫
0

tp
∣∣∣∣(φ−1

)′((
1− t

2

)
φ(a) +

t

2
φ(b)

)∣∣∣∣p dt
1/p(

3 |f ′(a)|q + |f ′(b)|q

4

)1/q

.
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The proof is completed. ■

Corollary 2.17

i i. If we take φ(x) = mx+ n to (29), we obtain

∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ (33)

⩽ b− a

4(p+ 1)1/p

[(
|f ′(a)|q + 3 |f ′(b)|q

4

)1/q

+

(
3 |f ′(a)|q + |f ′(b)|q

4

)1/q
]

ii ii. If we take φ(x) = lnx to (29), we obtain

∣∣∣∣∣∣f (√ab)− 1

lnb− lna

b∫
a

f(x)

x
dx

∣∣∣∣∣∣ (34)

⩽ lnb− lna

4

[
(B1(t; a, b))

1/p

(
|f ′(a)|q + 3 |f ′(b)|q

4

)1/q

+(B2(t; a, b))
1/p

(
3 |f ′(a)|q + |f ′(b)|q

4

)1/q
]

where

B1(t; a, b) =

1∫
0

tpa
t

2 b1−
t

2dt,

B2(t; a, b) =

1∫
0

tpa1−
t

2 b
t

2dt.

iii iii. If we take φ(x) = xp, p ∈ R \ {0}, to (29), we obtain

∣∣∣∣∣∣f
((

ap + bp

2

)1/p
)

− p

bp − ap

b∫
a

f(x)

x1−p
dx

∣∣∣∣∣∣ (35)

⩽ bp − ap

4p

[
(B1(t; a, b))

1/p

(
|f ′(a)|q + 3 |f ′(b)|q

4

)1/q

+ (B2(t; a, b))
1/p

(
3 |f ′(a)|q + |f ′(b)|q

4

)1/q
]
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where

B1(t; a, b) =

1∫
0

tp
(
t

2
ap +

(
1− t

2

)
bp
) 1

p
−1

dt,

B2(t; a, b) =

1∫
0

tp
((

1− t

2

)
ap +

t

2
bp
) 1

p
−1

dt.

Theorem 2.18 Let f : I ⊆ [0,∞) → R be differentiable on Io and a, b ∈ Io

with a < b, φ : I → R be a continuous and strictly monotonic function such that
φ−1 : φ(Io) → Io is continuously differentiable functions. If |f ′|q, q ⩾ 1, is MφA-
convex function on [a, b] then we get

∣∣∣∣∣∣f
(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx

∣∣∣∣∣∣ (36)

⩽ φ(b)− φ(a)

23−
1

q

[(
C1(t; a, b)

∣∣f ′(a)∣∣q + C2(t; a, b)
∣∣f ′(b)∣∣q)1/q

+
(
C3(t; a, b)

∣∣f ′(a)∣∣q + C4(t; a, b)
∣∣f ′(b)∣∣q)1/q]

where

C1(t; a, b) =

1∫
0

t2

2

∣∣∣∣φ−1

(
t

2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣q dt,
C2(t; a, b) =

1∫
0

(
t− t2

2

) ∣∣∣∣φ−1

(
t

2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣q dt,
C3(t; a, b) =

1∫
0

(
t− t2

2

) ∣∣∣∣φ−1

((
1− t

2

)
φ(a) +

t

2
φ(b)

)∣∣∣∣q dt,
C3(t; a, b) =

1∫
0

t2

2

∣∣∣∣φ−1

((
1− t

2

)
φ(a) +

t

2
φ(b)

)∣∣∣∣q dt.

Proof we use the power mean inequality in (18) and the |f ′|q, q ⩾ 1, is MφA-
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convex function then we get∣∣∣∣∣∣f
(
φ−1

(
φ(a) + φ(b)

2

))
− 1

φ(b)− φ(a)

b∫
a

f(x)φ′(x)dx

∣∣∣∣∣∣ (37)

⩽ φ(b)− φ(a)

4


 1∫

0

tdt

1− 1

q
 1∫

0

t
∣∣φ−1

(
t
2φ(a) +

(
1− t

2

)
φ(b)

)
f ′
(
φ−1

(
t
2φ(a) +

(
1− t

2

)
φ(b)

))∣∣q dt
1/q

+

 1∫
0

tdt

1− 1

q
 1∫

0

t
∣∣φ−1

((
1− t

2

)
φ(a) + t

2φ(b)
)

f ′
(
φ−1

((
1− t

2

)
φ(a) + t

2φ(b)
))∣∣q dt

1/q


⩽ φ(b)− φ(a)

23−
1

q

 1∫
0

t2

2

∣∣∣∣φ−1

(
t

2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣q ∣∣f ′(a)∣∣q dt
+

1∫
0

(
t− t2

2

) ∣∣∣∣φ−1

(
t

2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣q ∣∣f ′(b)∣∣q dt
1/q

+

 1∫
0

(
t− t2

2

) ∣∣∣∣φ−1

(
t

2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣q ∣∣f ′(a)∣∣q dt

+

1∫
0

t2

2

∣∣∣∣φ−1

(
t

2
φ(a) +

(
1− t

2

)
φ(b)

)∣∣∣∣q ∣∣f ′(b)∣∣q dt
1/q

 .
This completes the proof. ■

3. Conclusions

In this study, we have defined a new and general convex function class. We have
given the properties of this convex function. We obtained Hermite-Hadamard in-
equality for the convex function we achieved, and in special cases we showed that
it was reduced to different convex classes.
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