تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,340,638 |
تعداد دریافت فایل اصل مقاله | 55,383,983 |
شناسایی گنبدهای نمکی منطقه راور، استانکرمان با استفاده از روش پلاریمتری راداری تصاویر Palsar و تحلیل تصاویر چندطیفی Sentinel 2 و Aster | ||
سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی | ||
مقاله 5، دوره 11، شماره 2 - شماره پیاپی 39، تیر 1399، صفحه 86-105 اصل مقاله (9.28 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30495/girs.2020.674657 | ||
نویسندگان | ||
علی مهرابی* 1؛ صادق کریمی1؛ فاطمه نقدی2 | ||
1استادیار گروه جغرافیا و برنامه ریزی شهری، دانشکده ادبیات و علوم انسانی، دانشگاه شهید باهنرکرمان، کرمان، ایران | ||
2دانشجوی کارشناسی ارشد مخاطرات محیطی، گروه جغرافیا و برنامهریزی شهری، دانشکده ادبیات و علوم انسانی، دانشگاه شهید باهنرکرمان، | ||
چکیده | ||
پیشینه و هدف گنبدهای نمکی یکی از جالبترین پدیده های ژئومورفیک است که علاوه بر جاذبه های گردشگری، دارای منابع معدنی مختلف بوده و میتواند در مواردی نقش یک عامل ذخیره کننده نفتی و تله نفتی عمل کند، شناسایی آن ها بسیار با اهمیت است. کشور ایران از نظر نهشته های تبخیری بسیار غنی است و همچنین فراوانی منحصر بفردی از گنبدهای نمکی رخنمون شده را نشان می دهد. بیشترین گنبدهای نمک شناخته شده در جنوب زاگرس و ناحیه خلیج فارس پراکنده اند. ولی در مناطق دیگر ایران نیز گزارش شده اند، از جمله کویر بزرگ، گرمسار، قم و منطقه راور. تاکنون بر روی گنبدهای نمکی منطقه راور مطالعه ویژه ای صورت نگرفته است. به طوری که تنها به وجود چندین گنبد در بخش شمال و شرق راور اشاره شده است، بدون اینکه حتی موقعیت آن ها بر روی نقشه ای مشخص شده باشد. بنابراین ضرورت مطالعه بیشتر این منطقه مشخص می شود. هدف اصلی این تحقیق، شناسایی گنبدهای نمکی رخنمون یافته در محدوده شهرستان راور، استان کرمان با استفاده از روش های نوین سنجش از دور و استفاده از تصاویر راداری و چند طیفی است. مواد و روش ها روش های مختلفی برای پردازش تصاویر چند طیفی وجود دارد، که از مهمترین آن ها می توان به روش تحلیل مولفه های اصلی و ترکیب رنگی کاذب اشاره کرد که در ادامه به نحوه استفاده از این روش ها در پژوهش حاضر اشاره می شود. برای تهیه ترکیب رنگی کاذب از باندهای حرارتی سنجنده Aster استفاده شد، به طوریکه با قرار دادن باندهای 12، 11 و 13 به ترتیب درکانال های قرمز، سبز و آبی، کانی های مذکور بارزسازی شدند. مطالعات انجام گرفته در زمینه استفاده از تکنیک تحلیل مولفه های اصلی برای تصاویر ماهوارهای سنتینل 2 در شناسایی شوری خاک و سنگ، نشان می دهد که ترکیب رنگی کاذب PC7، PC6 و PC2 به ترتیب در کانال های قرمز، سبز و آبی بدین منظور بسیار مناسب است، که در این پژوهش نیز به همبن صورت عمل شد. نتایج و بحث با انجام تصحیحات اتمسفری بر روی تصاویر چند طیفی سنتینل 2، تحلیل مولفه های اصلی بر روی آن صورت پذیرفت که در نتیجه آن، تصویر مربوطه به 12 مولفه تقسیم شد. با استفاده از سه مولفه اصلی 2، 6 و 7 اقدام به تهیه ترکیب رنگی کاذب گردید. نتایج نشان می دهد که واحدهای سنگی مختلف با رنگ های متفاوتی بارزسازی شده اند. در این بین با توجه به مطالعات قبلی و با بررسی رنگ های مختلف و مقایسه و تطبیق آن با نقشه زمین شناسی منطقه مورد مطالعه، مشخص شد که رنگ صورتی روشن نشانگر واحدهای نمک دار در منطقه مورد مطالعه می باشد که این موضوع با انجام مطالعات میدانی به اثبات رسید. قابل ذکر است که محدوده های صورتی رنگ علاوه بر تعیین گنبدهای نمکی، نمک های ثانویه ناشی از هوازدگی و فرسایش این گنبدها را نیز نشان می دهد. از آنجایی که ترکیب گنبدهای نمکی رخنمون یافته در حوزه نمکی راور متفاوت هستند، به طوری که در یکسری از این گنبدها کانی های نمکی و پلی هالیت غالب بوده و در بعضی دیگر کانی های سولفاته به مانند ژیپس و کانی های کربناته مانند انیدریت کانی غالب را تشکیل می دهند، بر حسب ویژگی ها و رفتار طیفی کانی های غالب هر گروه می توان از تصاویر مختلف ماهواره ای جهت بارزسازی آنها استفاده کرد. بر این اساس از تصاویر Aster نیز استفاده شد، بنابراین با توجه به رفتار طیفی ویژه کانی های انیدریت و ژیپس در محدوده طیف حرارتی، می توان با قرار دادن باندهای 12، 11 و 13 به ترتیب درکانال های قرمز، سبز و آبی، ترکیب رنگی ویژه ای جهت شناخت گنبدهای نمکی ایجاد کرد. همانطور که در نتایج مشخص است گنبدهای نمکی دارای کانی غالب ژیپس و انیدریت با رنگ سفید روشن مشخص شده اند. با انجام تکنیک پلاریمتری راداری و اعمال شاخص CPR تصاویر مربوطه تهیه شد. از آنجاییکه قبلاً نیز اشاره شد رنج دادههای مربوط به تصویر CPR ارتباط تنگاتنگی با نوع و رفتار طیفی سطوح مختلف دارد، به منظور تحلیل بهتر تصاویر رنج داده ها بین عدد صفر و 1 نرمال سازی شد. هر چه اعداد مذکور به عدد یک نزدیکتر شوند، زبری ناشی از فرسایش پذیری سطوح بیشتر خواهد بود. در نتیجه مناطقی که در تصویر به رنگ قرمز درآمده اند قاعدتاً بسیار فرسایش پذیر هستند. نتیجه گیری نتایج حاصل از این پژوهش نشان می دهد که با استفاده از روش پلاریمتری راداری می توان کانی های تبخیری و گنبدهای نمکی را شناسایی کرد. در این تحقیق با اعمال شاخص CPR، گنبدهای نمکی با رنگ قرمز بارزسازی شدند. علاوه بر آن با توجه به رفتار طیفی ویژه کانی های انیدریت و ژیپس در محدوده طیف حرارتی، با ترکیب رنگی باندهای 12، 11 و 13 تصاویر ASTER گنبدهای نمکی به رنگ روشن مشخص شدند. همچنین با استفاده از سه مؤلفه اصلی 2، 6 و 7 تهیه شده از تصاویر سنتینل 2، واحدهای نمک دار موجود در منطقه مورد مطالعه مورد شناسایی قرار گرفتند. بر اساس نتایج به دست آمده تعداد 27 گنبد نمکی در محدوده مورد مطالعه شناسایی شد، که به مکانیزم و ساز و کار ساختاری معمول برای ایجاد گنبدهای نمکی همخوانی خوبی دارند، علاوه بر اینکه با انجام بازدیدهای میدانی صحت نتایج به اثبات رسید. | ||
کلیدواژهها | ||
گنبد نمکی؛ پلاریمتری راداری؛ تصاویر سنتینل-2؛ تصاویر استر؛ شهرستان راور کرمان | ||
مراجع | ||
Abdolahi M, Qishlaqi A, Abasnejad A. 2015. Environmental hydro geochemistry of groundwater resources of the Ravar plain, Northern Kerman province, Iran. Journal of Environmental Studies, 41(1): 81-95. (In Persian) Aghanabati S A. 2003. Geology of Iran. Geological Survey of Iran. 583p. (In Persian) Alexakis D, Daliakopoulos I, Panagea I, Tsanis I. 2018. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto International, 33(4): 321-338. doi:https://doi.org/10.1080/10106049.2016.1250826. Almodaresi SA, Hatami J, Sarkargar A. 2016. Calculating the physical properties of snow, using differential radar interferometry and TerraSAR-X and MODIS images, Journal of RS and GIS for Natural Resources, 7(2): 59-76. (In Persian) Asfaw E, Suryabhagavan KV, Argaw M. 2016. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 7(18): 213-228. https://doi.org/10.1016/j.jssas.2016.05.003. Campbell B A. 2002. Radar remote sensing of planetary surfaces. Cambridge, UK: Cambridge University Press Location, 354p. Choe B. 2017. Polarimetric synthetic aperture radar (SAR) application for geological mapping and resource exploration in the Canadian Arctic. London, Canada: University of Western Ontario. Available from: https://ir. lib.uwo.ca/etd/5133. Collingwood A, Treitz P, Charbonneau F. 2014. Surface roughness estimation from RADARSAT-2 data in a High Arctic environment. International Journal of Applied Earth Observation and Geoinformation, 27: 70–80. https://doi.org/10.1016/j.jag.2013.08.010. Dehaan R, Taylor G. 2003. Image-derived spectral endmembers as indicators of salinisation. International Journal of Remote Sensing, 24(4): 775-794. doi:https://doi.org/10.1080/01431160110107635. Gorji T, Sertel E, Tanik A. 2017. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators, 74: 384–391. https://doi.org/10.1016/j.ecolind.2016.11.043. Gupta RP. 2017. Remote sensing geology. Springer, 428 p. Harrington E, Shaposhnikova M, Neish C, Tornabene L, Tornabene L, Osinski G, Choe B, Zanetti M. 2019. A Polarimetric SAR and Multispectral Remote Sensing Approach for Mapping Salt Diapirs: Axel Heiberg Island, NU, Canada, Canadian Journal of Remote Sensing, 45(1): 54-72, https://doi.org/10.1080/07038992.2019.1610656. Jahani S, de Lamotte DF, Letouzey J. 2009. Salt Activity and Halokinesis in the Zagros Fold-thrust Belt and Persian Gulf (Iran). In: Shiraz 2009-1st EAGE International Petroleum Conference and Exhibition. European Association of Geoscientists & Engineers, pp cp-125-00012, https://doi.org/00010.03997/02214-04609.20145862. Khaier F. 2003. Soil salinity detection using satellite remote sensing. In. ITC, International Institute for Geo-information Science and Earth Observation, 1- 70. https://doi.org/10.1016/j.proeng.2012.01.1193. Maleki M, Tavakkoli Sabour S M, Zeaieanfirouzabadi P, Raeisi M. 2018. Comparison of optic and radar data for terrain feature extraction, Journal of RS and GIS for Natural Resources, 9(2): 93-107. (In Persian) Martín‐Martín J, Vergés J, Saura E, Moragas M, Messager G, Baqués V, Razin P, Grélaud C, Malaval M, Joussiaume R. 2017. Diapiric growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco). Tectonics, 36(1): 2-32. doi:https://doi.org/10.1002/2016TC004300. Mehrabi A, Pourkhosravani M. 2018. Identification of the geomorphological landscape of Hormoz salt domes based on the interpretation of satellite images. Journal of Natural Geography, 11(42): 113-124. (In Persian) Mehrabi A. 2018. Identification of the new and active buried salt dome evidences in the Zagros region using interferometry method of SENTINEL-1 and ASAR radar images. Journal of RS and GIS for Natural Resources, 9(4): 90-101. (In Persian) Morshed MM, Islam MT, Jamil R. 2016. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data. Environmental Monitoring and Assessment, 188(2): 119. doi:10.1007/s10661-015-5045-x. Motamedi H, Sepehr M, Sherkati S, Pourkermani M. 2011. Multi‐phase Hormuz salt diapirism in the southern Zagros, SW Iran. Journal of Petroleum Geology, 34(1): 29-43. doi:https://doi.org/10.1111/j.1747-5457.2011.00491.x. Pourkaseb H, Demiri K, Rangzan K, Saiedi S. 2013. The Jahani salt dome lithographic unit’s enhancement (Firoozabad), using the principle components analysis, Journal of Economic Geology, 1(5): 83-92. (In Persian) Saiedian R, Honarmand M, Hasanzadeh R, Hosseinjanizadeh M. 2017. The enhancement of the southwest of Saveh Salt domes using ASTER images, 10th National Geological Conference of Payame Noor University, Tabriz, 23-35. (In Persian) Shayan S, Zare G, Sharifikia M, Amiri S. 2012. Identification and analysis of geomorphological forms related to the evolution of salt domes (Case study: Karsia Salt Dome - Darab Plain), Quantitative Geomorphological Research, 1(2): 73-86. (In Persian) Taghadosi MM, Hasanlou M, Eftekhari K. 2019. Retrieval of soil salinity from Sentinel-2 multispectral imagery. European Journal of Remote Sensing, 52(1): 138-154. doi:https://doi.org/10.1080/22797254.2019.1571870. Tayebi MH, Tangestani MH, Roosta H. 2013. Mapping salt diapirs and salt diapir-affected areas using MLP neural network model and ASTER data. International journal of digital earth, 6(2): 143-157. doi:https://doi.org/10.1080/17538947.2011.606336 Van der Meer FD, van der Werff HMA, van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen MF, van der Meijde M, Carranza EJM, Smeth JBd, Woldai T. 2012. Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128. doi:https://doi.org/10.1016/j.jag.2011.08.002. Yellala A, Kumar V, Høgda KA. 2019. Bara Shigri and Chhota Shigri glacier velocity estimation in western Himalaya using Sentinel-1 SAR data. International Journal of Remote Sensing, 40(15): 5861-5874. doi:https://doi.org/10.1080/01431161.2019.1584685. Zarekamali M, Almodaresi S A, Naghdi K. 2017. Comparing the magnitude of the earth’s vertical relocation using the SBAS algorithm in X and C radar bands (Case study: Tehran lands), Journal of RS and GIS for Natural Resources, 8(3): 104-120. (In Persian) | ||
آمار تعداد مشاهده مقاله: 699 تعداد دریافت فایل اصل مقاله: 470 |