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  INTRODUCTION 
 

Stable isotope analysis (SIA) is considered a helpful tool in 
a range of researches such as the study of climatic condition 
(Barnet et al. 2019), agricultural products, biological proc-
esses and biogeochemical cycles (Chaffee et al. 2007). In 
ecological studies, the measurement of stable isotopes in 
plants and animals is applied to the determination of animal 
feeding behavior, movement, and trophic position along 
food chains (Bouillon et al. 2011; Ben-David and Flaherty, 
2012). Stable isotopes are safe (non-radioactive) and can be 
operated by humans. Even infants and pregnant women can 
be safely examined in medicine and nutrition studies. Natu-
rally occurring stable isotopes are transferred from the 
physical environment to primary producers, as well as from 
a resource to its consumer, and emerge in hair, urine, feces, 
breath, and blood (Hagen, 1963; Rossi et al. 2018). Thus, 

they can be used to trace nutrient uptake in producers and 
consumers in both terrestrial and marine ecosystems 
(Madeira et al. 2019; Signa et al. 2019; Calizza et al. 2018). 
Many measurement techniques depend on natural differ-
ences in the way ‘light’ and ‘heavy’ isotopes react during 
metabolic processes through biological and chemical altera-
tions. Other stable isotope techniques depend on adding 
trace amounts of compounds artificially enriched in the rare 
(heavy) isotope of the element of interest. These are called 
isotope tracer methods / techniques. About a century ago, 
Fredrick Soddy was the first to identify signs of the exis-
tence of isotopes (Wilkinson, 2018). Isotopes are classified 
into ‘Stable’ and ‘Unstable’ groups. The unstable isotopes, 
which are not the subject of this research, are radioactive. 
Here the question is ‘What are the stable isotopes?’. To 
answer this question, we should start by focusing on the 
atomic nucleus. Indeed, a different number of neutrons 
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within the nucleus of the heavy and light stable isotopes 
leads to different atomic masses (Ben-David and Flaherty, 
2012). Both light and heavy stable isotopes play a similar 
role in biological and chemical reactions, but with different 
response rates. The attractive forces and chemical bonds of 
the light stable isotope are weaker than the heavier isotope 
of an element. Thus, the lighter isotope reacts more quickly 
than the heavier one in both biological and chemical reac-
tions. Even though oxygen (O), sulfur (S), and deuterium 
(D) are applied in some studies, nitrogen (N) and carbon 
(C) are the two main elements considered in the study of 
animal diet and food webs.  
 
Nitrogen (14N, 15N)  
Natural nitrogen includes two stable isotopes (14N, 15N). 14N 
is the most common isotope, while 15N is the rarest. Differ-
ent nitrogen isotopes (14N and 15N) can be distinguished 
through thermal diffusion or chemical exchanges. Other 
isotopes of nitrogen can be found in nature, such as 12N, 
13N, 16N, and 17N. However, these isotopes are radioactive. 
Living organisms through the ‘nitrogen cycle’ usually 
transform nitrogen. Microbes convert different nitrogen 
compounds (like ammonia, NH3

+) to nitrates for green 
plants and algae (Finlay and Kendall, 2008). Animals get 
their required nitrogen by consuming other living organ-
isms (Post, 2002). The measurement of the isotopic signa-
ture of nitrogen (δ15N) plays an important role in biochemi-
cal, industrial and ecological applications such as food 
preservation, quantification of ecological processes and 
feeding interactions among organisms, medical and bio-
medical research (Schellekens et al. 2011; Calizza et al. 
2018; Signa et al. 2019), and climate studies (Dotsika and 
Diamantopoulos, 2019).  
 
Carbon (12C, 13C, 14C) 
One of the essential elements on earth is carbon, which 
forms the chemical basis of life. There are three natural 
isotopes of carbon, with atomic masses of 12, 13, and 14. 
12C and 13C are stable and are used as tracers to understand 
nutrient cycling (Wang et al. 2019), food webs (Telsnig et 
al. 2019), and air-sea swapping of CO2 (Lynch-Stieglitz et 
al. 1995).  
Plants and phytoplankton have a preferential use of12C to 
convert sunlight and carbon dioxide into biomass. The 
ocean surface is separated from the deeper water. However, 
when plankton dies, it sinks and removes 12C from the sur-
face (Flannery, 2006). The 14C, or radiocarbon, is unstable. 
It is produced in the atmosphere and absorbed by living 
organisms (Marra, 2019). Carbon signatures can be used in 
agricultural and climate studies, authentication of foodstuff, 
description of nutrient fluxes in ecosystems, and in the de-

termination of the age of archaeological specimens (Zeuner, 
1958; Aitken, 2013; Signa et al. 2019).  
 
Hydrogen (1H, 2H, 3H, 4H, 5H, 6H, 7H) 
Hydrogen has two naturally stable isotopes, 1H and 2H. The 
2H isotope is called deuterium (D), while 3H is known as 
tritium (T), which is radioactive. Four other hydrogen iso-
topes, 4H, 5H, 6H, and 7H, are highly unstable and have been 
synthesized in the laboratory by bombarding tritium and by 
fast-moving deuterium or tritium nuclei (Golovkov et al. 
2003).  
Some applications of the hydrogen isotopes could be high-
lighted in the authentication of foodstuff, agricultural, eco-
logical, geochemical studies, and medical applications 
(Finlay and Kendall, 2008; Boschetti et al. 2019).  
 
Oxygen (16O, 17O, 18O)  
Oxygen isotopes include three stable forms. The most 
abundant is 16O, while 17O and 18O are categorized as sec-
ondary stable isotopes. The 16O is mostly produced by mas-
sive stars composed only of hydrogen. 17O and 18O nucleo-
synthesis needs seed nuclei. The 17O is produced by hydro-
gen burning into helium in CNO (Carbon-Nitrogen-
Oxygen) cycle, and 18O is made when the14N catches 
the4He nucleus (Meyer, 2005; Emsley, 2011). Oxygen iso-
topes can be used in the authentication of foodstuff, agricul-
tural, ecological, geochemical, climate, and medical studies 
(Finlay and Kendall, 2008; Boschetti et al. 2019; Duffy et 
al. 2019).  
 
Sulfur (32S, 33S, 34S, 36S)  
Sulfur has twenty-four isotopes. Among these, 32S, 33S, 34S, 
and 36S are stable. Understanding acidic deposition in the 
forest ecosystems is the major application of sulfur isotopes 
(Campbell et al. 2006). The 34S values increase with pollu-
tion sources and gas emission, which makes sulfur a power-
ful detector (Mayer et al. 1993). 
The sulfur input to marine systems mainly arises from sea-
water sulfate (δ34S=21‰), whereas terrestrial inputs mainly 
depend on precipitations (δ34S=2-8‰) (Michener and 
Kaufman, 2008).  
 
Instrument 
The abundance of stable isotopes in mineral and biological 
samples is measured as the heavy-to-light isotope ratio (R). 
For a given element (X), the isotopic signature of a sample 
(δ) is expressed as the per mill deviation (‰) from an inter-
national standard (Muccio and Jackson, 2009; Philp, 2015), 
according to the following equation: 
 
δX= (RSample/RStandard-1) × 1000                                (1) 
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The International Atomic Energy Agency (2004) and the 
National Institute of Standards and Technology (Muccio 
and Jackson, 2009) provided an accurate evaluation of the 
reference standard elements (Lynch-Stieglitz et al. 1995; 
Werner and Brand, 2001; Flannery, 2006; Brand et al. 
2014). The ratios of 13C/12C, 15N/14N, 18O/16O, and 2H/1H 
have been used widely to measure stable isotopes in carbon, 
nitrogen, oxygen, and hydrogen (Muccio and Jackson, 
2009). The analytical determination of δ values implies the 
use of few light gases such as CO2, CO, N2, O2, and SO2. 
Accordingly, this standard technology has been called Iso-
tope Ratio Mass Spectrometry (IRMS) (Brand, 2004). This 
analytical method identifies the chemical substance by ion-
izing it, focusing the resulting ions into a beam, and by 
separating the light and heavy atoms according to their net 
electric charge (Finlay and Kendall, 2008). The classical 
method of analysis includes two gases that are stored in 
containers connected via capillaries to a switching unit, the 
changeover valve. An isotope ratio mass spectrometer uses 
one gas as its ion source, while other available gas flow to 
the waste vacuum line (Werner and Brand, 2001). Both 
gases are used and compared a few times and measured 
separately through the ion currents. The relative difference 
in the ratio of light and heavy ions is calculated according 
to an international relative isotope ratio scale (Paul et al. 
2007). The instrument has six basic components (Figure 1) 
(Edmond de and Stroobant, 2013), which include: 1) a vac-
uum system; 2) an ion source; 3) a mechanism to concen-
trate ions into a narrower beam; 4) the speeding up of the 
beam; 5) a mass analyzer; 6) a detector. The material is 
initially present in the vacuum system, which produces the 
required low pressure to produce electrons and ions in the 
gas phase. Then, samples are transformed and concentrated 
into a narrower beam. (Brenna et al. 1997; Meier-
Augenstein, 1999; Paul et al. 2007). Commonly, two con-
nectors are used to introduce samples into isotope ratio 
mass spectrometry (IRMS): elemental analysers (EAIRMS) 
and gas chromatographers (GCIRMS). For many years, 
techniques such as gas chromatography (GC) and gas 
chromatography-mass spectrometer (GCMS) have been 
used to identify contamination sources (Philp, 2015). Simi-
larly, the combined gas chromatography isotope ratio mass 
spectrometry (GCIRMS) technique can be used to deter-
mine individual compounds and soil contamination sources. 

 
Sampling procedures  
Before sampling, it is necessary to define what kind of in-
formation is needed. This information usually depends on 
research objectives and the type of samples to be collected. 
Otherwise, the risk is to waste time and resources in collect-
ing either wrong or not enough data.  

The sampling design is a tool that is utilized to infer how 
many data to collect, where, when, and how often they 
should be collected.  
 
Plant sampling  
Samples of vascular plants should be collected in the field 
and separately kept cold or frozen until processing. Samples 
of non-vascular plants are divided into two sections: lichens 
and marine algae. Lichens samples need to be collected 
directly into paper bags and dried once in the laboratory 
(Eldridge et al. 2003). If no oven is available, they can be 
spread out in a warm and well-ventilated place in packets 
and stored upright in a box. The samples of marine algae 
may be partially dried in the sun, but the small ones should 
be placed between sheets of paper, and the large ones 
should be placed in a box for further drying. Afterward, 
specimens should be pressed and stored in a dry and warm 
place (Steinitz and Kurle, 2014).  
 
Animal sampling  
As regards terrestrial animals, it is possible to collect a 
sample of muscle, skin, feathers, eggshell, egg albumen, fur 
hairs, bones, etc. The samples may reflect diets ingested 
months before sampling, e.g. during the moulting or laying 
phase, and they can be collected from live or dead animals. 
Bone growth rings and whole bone can reflect an annual 
diet trend, during the whole animal’s lifetime. If bone sam-
ples are collected, soft tissues should be removed, and 
bones should be rinsed to remove impurities. When dry, 
bone samples can be placed in a paper bag. Feather samples 
should be cleaned to remove residual dirt and oil using a 
chloroform-methanol solution (Paritte and Kelly, 2009). 
Also, inorganic calcium carbonate from eggshell samples 
should be removed through a process of acidification 
(Finlay and Kendall, 2008).  

As regards aquatic animals, small invertebrates can be 
collected by using kick nets, grabs, and litterbags, while 
large predators such as crabs, sea snails, and stomatopods, 
can be gathered by using traps baited with fresh fish flesh 
(Careddu et al. 2015).  

For bigger organisms, the muscle tissue often provides 
enough biomass to perform stable isotope analyses 
(Abrantes et al. 2013), while for small invertebrates such as 
amphipods and polychaetes, the whole body can be used 
(Ng et al. 2007).  

In order to study a consumer’s diet, sampling should also 
include any dietary item that has likely been accessed by 
the consumer. All animal samples should be kept frozen at -
20 ˚C and then lyophilized or dried at 60 ˚C overnight and 
kept in dry conditions until analysis (Finlay and Kendall, 
2008).  
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Before isotopic analysis, all samples should be reduced to 

a fine homogeneous powder with a ball mill (Rossi et al. 
2018). Then, powder of animal tissues (0.20±0.05 dry-mg) 
and vegetal tissues (3.0±0.05 dry-mg) should be weighed 
into tin capsules and analysed with an isotope ratio mass 
spectrometer. Thus, based on δ13C and δ15N values of con-
sumers and their potential food sources, the animal diet can 
be determined through the R software (R Core Team, 
2013), and Bayesian stable isotope mixing model (Rossi et 
al. 2018). Specifically, Bayesian mixing models allow the 
estimation of the proportion of each resource in the con-
sumer’s diet. The model requires three inputs: the isotopic 
signatures of the target consumer, the isotopic signatures of 
potential food sources, and the trophic enrichment factor, 
which represents the expected isotopic increase from a re-
source to its consumer due to metabolic processes 
(McCutchan et al. 2003; Careddu et al. 2015). 
 
Stable isotope applications in animal nutrition  
As stated before, SIA is considered a helpful tool to be used 
in many disciplines. Among these, stable isotope-based 
environmental studies have recently flourished. Stable iso-
tope signatures can be used to measure environmental 
stressors by monitoring plant uptake of carbon dioxide 
(Zheng et al. 2019) and greenhouse gas emissions 
(International Atomic Energy Agency, 2004; Popa et al. 
2014) as well as by tracing the source of water in catch-
ments (Philp, 2015; Fiorentino et al. 2017; Barbieri, 2019)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Schematic fundamental components of mass spectrometry (Edmond de and Stroobant, 2013; Muccio and Jackson, 
2009) 

 
and organic and mineral compounds during biogeochemical 
processes (Finlay and Kendall, 2008) and cycles 
(Lichtfouse, 2000). The study of past climatic conditions is 
essential (Barnet et al. 2019; Jafari and Jafari, 2019) be-
cause it enables to modelling climate variability and make 
predictions of future conditions (Noorollahi et al. 2011). 
When dealing with animal nutrition, climate variability, 
ecological transitions, temporal and spatial scales, and indi-
vidual choices can all affect variation and adaptation in the 
diet of organisms across trophic levels (Careddu et al. 
2015; Bentivoglio et al. 2016; Calizza et al. 2018; Jafari 
and Jafari, 2019). Therefore, the study of temporal and spa-
tial patterns of animal foraging through stable isotope 
analysis can provide useful information to predict future 
variations in feeding preferences according to climate 
change scenarios (Finlay and Kendall, 2008; Calizza et al. 
2018; Rossi et al. 2019). In this perspective, oxygen isotope 
values can be used to indicate hotter and drier climate (18O 
enrichment) versus colder and wetter conditions (18O deple-
tion). As an example, results published by Noorollahi et al. 
(2011) showed that increasing temperature has a positive 
correlation with rising δ18O values. Also, enrichment in15N 
has been reported as an indication of arid conditions (Pate 
and Anson, 2007). The δ18O and δ2H values have been 
shown to vary across geographic regions (Bowen and Re-
venaugh, 2003) or along environmental gradients (Lee et al. 
2019), being thus useful to infer the geographic origin of 
samples. 
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SIA has proven to be a beneficial tool for: (1) studying 

nutrient uptake by humans, nutrient body reserve and nutri-
ent metabolism paths (Schoeller, 2002), (2) describing con-
taminant flows (Signa et al. 2019), trophic relationships and 
food web structures (Careddu et al. 2015; Rossi et al. 2015; 
Calizza et al. 2018; Signa et al. 2019), as well as nutrient 
status (Calizza et al. 2016), (3) examining animal move-
ment and migration (Di Lascio et al. 2016; Cicala et al. 
2019; Madeira et al. 2019), (4) clarifying patterns of reso- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 2 Differences in δ13C (‰) and δ15N (‰) between food webs based on C3 and C4 plants (Schulting, 1998) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

urceallocation (Stachowicz et al. 2007; Di Lascio et al. 
2013), (5) identifying primary and secondary food sources 
(Komorita et al. 2014), and (6) detecting nutrient and min-
eral uptake by plants (Clewlow et al. 2019). The principal 
aspects of animal nutrition generally investigated through 
SIA are diet patterns and trophic position of organisms 
along food chains (Boecklen et al. 2011; Bentivoglio et al. 
2016). As mentioned, stable isotope analysis enables the 
evaluation of the trophic position of organisms and popula-

Figure 3 Differences in δ13 15C (‰) and δ N (‰) values in Marine ecosystem (Schulting, 1998)
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tions in food webs. However, the isotopic values in the con-
sumer alone do not trace its trophic position (Bentivoglio et 
al. 2016). Indeed, there is a stepwise increase between the 
corresponding isotope signature of food consumed and the 
consumers’ tissue. Such expected isotopic increase between 
consumers and resources is referred to as isotopic discrimi-
nation or trophic enrichment (McCutchan et al. 2003). As 
an example, when an animal, such as a cow or a sheep, eats 
a specific plant, it will express the plant isotopic value in its 
muscles, bones or teeth, but the heavy isotope will be rela-
tively more retained in the consumer’s tissues than the light 
one (Careddu et al. 2015; Cassano et al. 2016; Reid and 
Koch, 2017). However, the plant energy and nutrition val-
ues also vary through growth stages (Jafari and Torbatine-
jad, 2015). Thus, it is essential to consider potential differ-
ences in environmental conditions and diet components 
when studying animal diet (Jafari and Torbatinejad, 2015). 
Isotopic fractionation is particularly marked for nitrogen, 
while the carbon and sulfur isotopic composition of con-
sumers closely reflects that in their diet. Studies with cows, 
fish, and zooplankton show that animal’s feces are enriched 
in 15N versus the diet, but urinary nitrogen (both NH3

+ and 
urea) is depleted in 15N. For example, cow urine can be 1‰ 
to 4‰ depleted in 15N versus diet, while feces (2‰), and 
milk and blood (4‰ both) are enriched in 15N. The ratio of 
sulfur isotopes (δ34S) varies substantially among salt marsh 
and marine primary producers from -9.6‰ to +12.9‰ 
(Currin et al. 1995). Thus, the δ34S can be used to identify 
resource pools in these ecosystems. Similarly, the δ34S val-
ues have been measured in transitional water ecosystems 
and marine ecotones to distinguish between marine and 
freshwater inputs (Peterson and Howarth, 1987; Currin et 
al. 1995; Martinetto et al. 2006; Finlay and Kendall, 2008).  
δ13C values in phytoplankton can vary markedly with lati-
tude and longitude. Indeed, δ13C values may vary with tem-
perature, location, and growth rates that can affect the car-
bon uptake rate by phytoplankton (Zheng et al. 2019). Sig-
nificant differences in carbon isotopes between animals 
indicate that consumers rely on different food sources or 
that their respective food webs are based on primary pro-
ducers characterised by different isotopic signatures 
(Michener and Kaufman, 2008). Differences in the process-
ing of carbon, nitrogen, and sulfur isotopes by animals 
stand out even more clearly, when the whole food web is 
examined. In many food webs, nitrogen isotope values in-
crease by 10‰ to 15‰ from basal resources to top preda-
tors due to 3‰ to 5‰ stepwise increase among subsequent 
trophic levels. The opposite effect – no change with in-
creasing trophic level – is observed for sulphur (Saggar et 
al. 1981).  

The isotopic differences in consumer δ13C may arise also 
by the consumption of C3 or C4 plants. The C3 plants are 

linked with a wetter and colder climate, while C4 plants are 
related to more arid and warmer conditions. As a conse-
quence of metabolic adaptation by plants to such different 
climatic conditions, C4 plants generally show markedly 
higher δ13C values (from -10‰ to -18‰) than C3 plants 
(from -22‰ to -30‰) (Philp, 2015) (Figure 4). In addition, 
C3 plants may also show lower δ15N values than C4 plants 
(Figure 4).  

DeNiro and Epstein (1981) mentioned that δ13C values in 
C3 plants averaged around -25.5‰, while values around -
9.0‰ were reported for C4 plants (Figure 2). The δ13C 
value of meat was around -18.0‰, suggesting that the ani-
mal’s diet was composed by a mix of C3 and C4 plants 
(Deniro and Epstein, 1981). Differences in δ13C values have 
also been reported between terrestrial plants and aquatic 
algae (Rossi et al. 2010). The latter generally show higher 
δ15N values than the former (Figure 3) (Schulting, 1998). 
This mainly depends on differences between the sources of 
carbon used for primary production in the two systems 
(Schulting, 1998). As shown in Figure 4, the δ13C of terres-
trial C3 primary producers is generally lower than that of 
marine producers (Vinagre et al. 2011). In addition, δ13C 
signatures in plants can be affected by plant development 
and water management (Schulting, 1998; Barbieri, 2019). 
Given such expected differences among marine and terres-
trial ecosystems, isotopic differences among aquatic con-
sumers can inform on the benthic or terrigenous origin of 
nutrient inputs at the base of coastal or littoral food webs. 
Furthermore, dissolved inorganic carbon in estuaries com-
monly derives from different sources, either CO2 from the 
atmosphere or the dissolution of carbonate with approxi-
mately zero per mill value of δ13C (Finlay and Kendall, 
2008; Bouillon et al. 2011). Given the predominance of C3 
metabolism in coastal and aquatic vegetation, the δ13C in 
aquatic consumers usually display values around -28‰. 
Chanton and Lewis (1999) showed that the δ13C values in 
estuaries are closely related to the soluble inorganic carbon 
and water salinity.  

At the community level, the range of δ13C values (Carbon 
Range) can provide a useful indication of the diversity of 
basal resources consumed by animals (Wilkinson, 2018) 
and both δ13Cand δ15N describe the niche space occupied 
by all the organisms. To move from the isotopic description 
of organisms to the quantification of trophic interactions 
within the food web, Phillips (2012) proposed the use of 
mixing model equations. By explicitly taking into account 
uncertainties in consumer and resource isotopic signatures, 
the development of Bayesian approaches has enabled a 
more robust description of trophic links between species 
(Careddu et al. 2015; Rossi et al. 2019). 

Some tissues, such as the dentine of teeth, hairs, and 
feathers are metabolically inert.  
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Therefore, the study of these tissues can inform on the 

isotopic signature of a consumer’s diet at the time of tissue 
deposition. If the rate of tissue deposition is known, these 
tissues can provide a timeline of the consumer’s dietary 
history (Layman et al. 2012). For example, Hobson and 
Sease (1998) recorded ontogenetic isotopic shifts in Steller 
sea lions from tooth annuli (Hobson and Sease, 1998). 
Newsome et al. (2009) documented temporal changes in 
resource use by the California sea otter Enhydra lutris ne-
reis by using regular sections of whiskers (Newsome et al. 
2009). In these cases, information on the inert tissue deposi-
tion processes is necessary. Indeed, the process can be con-
tinuous over time (e.g., for whiskers of some mammal spe-
cies), or discontinuous (e.g., for feathers) (Layman et al. 
2012). In addition, it must be considered that different tis-
sues are characterised by different turnover rates, thus pro-
viding dietary information over different time scales. 
Therefore, turnover rate data in the distinct tissues are re-
quired to conclude the degree of dietary proficiency 
(Layman et al. 2012). For instance, in some vertebrates, 
blood plasma integrates the diet over days to weeks, 
whereas turnover in muscle tissue is on the scale of months 
(Dalerum and Angerbjörn, 2005; Phillips and Eldridge, 
2006).  

Nowadays, SIA is utilized to address questions about 
human diets around the world, and it has been said that ‘we 
are what we eat’(Deniro and Epstein, 1981).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Trophic enrichment in stable carbon and nitrogen values from primary producers, to terrestrial her-
bivores and predators (circles and squares) and marine ecosystems (black triangles)  
Differences in δ13C between food webs based on C3 (black square symbols) and C4 plants (black circles 
symbols), omnivore/carnivore (grey circles), carnivore (grey squares) are also shown (Reid and Koch, 2017; 
Schulting, 1998) 

 
SIA provides quantitative data that complete floral, fau-

nal, and other information about dietary habits of individu-
als. This passage through human metabolism is specifically 
valuable to the quantitative study of human nutrition 
(Cooper et al. 2019). Humans express different isotope sig-
natures according to the consumption of C3 and C4 plants 
(Figure 2), terrestrial animal proteins like cow, sheep, and 
goat meat, or aquatic animal resources such as fish and 
shellfish (Figure 3) (Schulting, 1998). Interestingly, there 
are diverse plant groups in human nutrition that can be dif-
ferentiated through δ13C values in human tissues (such as 
hair), including C3 plants such as wheat, barley, soy, pota-
toes, fruits, vegetables versus C4 plants such as corn, sor-
ghum, millet, sugar cane. This difference is also reflected in 
animal-derived food products such as milk carbon signa-
tures ranging from -14‰ (diet-based C4 plants) to -27‰ 
(diet-based C3 plants) (Petzke et al. 2005). 
 

  CONCLUSION 

The present paper has highlighted the stable isotope con-
cept, applications, measurement method, and its relation-
ships with animal nutrition. The many examples cited allow 
us to conclude that the analysis of stable isotopes of nitro-
gen and carbon is a powerful tool for evaluating animal 
feeding choices and trophic position in food webs, as well 
as the trophic sources supporting aquatic and terrestrial  
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consumers. In addition, coupled with isotopic Bayesian 
mixing models, stable isotopes are a valuable tool that can 
provide insights into the structure and the complexity of 
food webs, as well as into the pathways of nutrient and en-
ergy transfer among ecosystem compartments and trophic 
levels. Nevertheless, it must be noted that many of the eco-
logical questions addressed through the analysis of stable 
isotopes are reliant on the assumption that source pools 
have distinguished isotope values. When sources cannot be 
distinguished, stable isotopes may have little performance 
in answering questions about trophic relationships. In this 
case, stable isotope analysis should be complemented with 
additional information, such as stomach content and/or fe-
ces analysis, as well as other data on feeding behaviour 
including direct observation of feeding preferences in the 
field. In any case, both source and consumer pools must be 
sampled on suitable spatial and temporal scales to provide 
reliable information on diet composition. Isotope signature 
differences in samples depend on the climate, the isotopic 
baseline of the food web the consumer is part of, organ-
isms’ dietary habits, and body conditions. Therefore, all 
these aspects should be considered in isotopic studies in 
order to achieve accurate results. Besides its broad applica-
tion in environmental and ecological studies, SIA is in-
creasingly used in thestudy of human diet, and ithas the 
potential to resolve many ambiguities in nutritional and 
medical studies. 
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