- Hughes, R. S. (1986).Logarithmic Amplification. Artech House.
- Oki, A. K., Kim, M. E., Gorman, G. M., &Camou, J. B. (1988). High-Performance GaAsHeterojunction Bipolar Transistor Logarithmic IF Amplifier. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, doi:1109/22.17440.
- Gertel, E., Johnson, D. M., & Kumar, M. (1990). 2-18 GHZ Logarithmic Amplification Componentry, IEEE MTT-S Digest. doi:1109/MWSYM.1990.99770.
- Nelly, D. J., & Parsons, D. S. (1992). A GaAs MMIC Based Successive Detection Logarithmic Amplifier. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium. doi:1109/MCS.1992.186022.
- Chua, L.W. (1992). A GaAs MMIC for a 2-7GHz Successive Detection Logarithmic Amplifier. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium. doi:1109/MCS.1992.186021.
- Wu, J. W., Hsu, K. C., Lai, W. J., To, C. H., Chen, S. W., Tang, C. W., &Juang, Y. Z. (2011).A linear-in-dB radio-frequency power detector.IEEE Microwave Symposium Digest (MTT). doi:1109/MWSYM.2011.5972772.
- Shieh, M. L., Lai, W. J., Li, J. S., Chiang, Y. L., Wu, H. H., Xsieh, C. C., et al. (2009). Linear Radio Frequency Power Detector. IEEE Microwave Conference, APMC 2009, doi:1109/APMC.2009.5385446.
- Haynes, M. (2008). Design and Measurement of a Wideband InP SDLA. ARMMS, April.
- Haynes, M. (2008). Wideband Monolithic SDLA Design Using InP DHBT Technology.IET Seminar on RF and Microwave IC Design, doi:1049/ic:20080109.
- Kimura, K. (1993). A CMOS Logarithmic IF Amplifier with Unbalanced Source-Coupled Pairs. IEEE J. Solid-State Circuits, doi:1109/4.179206.
- Analog Devices, AD640 Datasheet, Rev C, 1999.
- Kimura, K. (1992). Some Circuit Design Techniques for Bipolar and MOS Pseudologarithmic Rectifiers Operable on Low Supply Voltage. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,doi:1109/81.250169.
- Kimura, K. (1996). Some Circuit Design Techniques for Low-Voltage Analog Functional Elements Using Squaring Circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, doi:1109/81.508175.
- Chadwick, P.E. (1990). Advances in Logarithmic Amplifiers. IET Fifth International Conference on Radio Receivers and Associated Systems, 51-58.
- Gorman, G. M., Oki, A. K., Mrozek, E. M., Camou, J. B., Umemoto, D. K. & Kim, M. E. (1989). A GaAs HBT Monolithic Logarithmic IF (0.5 to 1.5 GHz) Amplifier with 60 dB Dynamic Range and 400 mW Power Consumption, IEEE MTT-S Digest, doi:1109/MWSYM.1989.38784.
- Yamada, F.M., Oki, A.K., Streit, D.C., Saito, Y., Coulson, A.R., Atwood, W.C., et al. (1994). Reliability of a High Performance Monolithic IC Fabricated Using a Production GaAsA1GaAs HBT Process. IEEE GaAs IC Symposium, doi:1109/GAAS.1994.636983.
- Khorram, S., Rofougaran, A., &Abidi, A. A. (1995). A CMOS Limiting Amplifier and Signal Strength Indicator. IEEE Symposium on VLSl Circuits Digest of Technical Papers, doi:1109/VLSIC.1995.520702.
- Woochul Jeon, (2005). Design and Fabrication of On-Chip Microwave Pulse Power Detectors. Doctor of Philosophy Dissertation, University of Maryland.
- Zhou, Y. &Wah, M. C. Y. (2006). A wide band CMOS RF power detector. IEEE International Symposium on Circuits and Systems, doi:1109/ISCAS.2006.1693562.
- Ferrari, G., Prati, E., Fumagalli, L., Sampietro, M., &Fanciulli, M. (2005). Microwave power detector based on a single MOSFET in standard technology. IEEE European Microwave Conference, doi:1109/EUMC.2005.1610150.
- Zhou Y. and Chia, M. Y. W. (2008). A low-power ultra-wideband cmos true rms power detector. Microwave Theory and Techniques, IEEE Transactions on, 56(5),Part 1, 1052–1058.
- Ratni, M., Huyart, B., Bergeault, E., &Jallet, L. (1998). RF power detector using a silicon MOSFET. IEEE MTT-S Digest, doi:1109/MWSYM.1998.705195.
- Townsend, K. A., Haslett, J.W., & Nielsen, J. (2007). A CMOS Integrated Power Detector for UWB.IEEE International Symposium on Circuits and Systems, doi:1109/ISCAS.2007.377987.
- Hao, X., Zheng, Y., Tian, F., Zhou, Q., Li, H., Liu, Z., ...& Liao, H. (2019). A Reverse-RSSI Logarithmic Power Detector With+ 35-dBm Maximum Detectable Power in 180-nm CMOS. IEEE Microwave and Wireless Components Letters, 29(9), 610-613.
- Qayyum, S., &Negra, R. (2018). Analysis and design of distributed power detectors. IEEE Transactions on Microwave Theory and Techniques, 66(9), 4191-4203.
- Stärke, P., Rieß, V., Carta, C., &Ellinger, F. (2018,October). Wideband Amplifier with Integrated Power Detector for 100 GHz to 200 GHz mm-Wave Applications. In 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS) (pp. 160-163). IEEE.
- Vlassis, S., Gialenios, G., Souliotis, G., &Plessas, F. (2019, July). Power Detector Based On Voltage Squaring. In 2019 42nd International Conference on Telecommunications and Signal Processing (TSP) (pp. 477-480). IEEE.
- Li, C., Yi, X., Boon, C. C., & Yang, K. (2019). A 34-dB dynamic range 0.7-mW compact switched-capacitor power detector in 65-nm CMOS. IEEE Transactions on Power Electronics, 34(10), 9365-9368.
- Venkatasubramanian, R. (2005). High Frequency Continuous-Time Circuits and Built-In-Self-Test Using CMOS RMS Detector.Master of Science Dissertation, Texas A&M University.
- Rami, S., Tuni, W., &Eisenstadt, W.R. (2010). Millimeter wave MOSFET amplitude detector. IEEESilicon Monolithic Integrated Circuits in RFSystems (SiRF),doi:1109/SMIC.2010.5422961.
- Valdes-Garcia, A., Venkatasubramanian, R., Srinivasan, R., Silva-Martinez, J., &Sinencio E. S. (2005). A CMOS RF rms detector for built in testing of wireless transceivers. 23rd IEEE VLSI Test Symposium, doi:1109/VTS.2005.8.
- Yin, Q., Eisenstadt, W. R., Fox, R. M., & Zhang, T. (2005). A translinearrms detector for embedded test of RF ICs. IEEE Trans. on Instrumentation and Measurement, doi:1109/TIM.2005.855105.
- Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G. (2001). Analysis and Design of Analog Integrated Circuits. J. Wiley & Sons, fourth ed. New York.
|