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In this study, the corrosion rates for St37 carbon steel in some soil 

types with different conditions were measured. The effects of the 

parameters of moisture amount, soil particle size, and salt 

concentration were determined by the mass loss method. An 

Artificial Neural Network (ANN) model with three inputs and one 

output was established to simulate the experimental data. It was 

observed that the Levenberg–Marquardt algorithm with hyperbolic 

tangent sigmoid transfer function provided the best results in training 

with the lowest MSE and MAE compared to the other methods in 

the model. The R values for training, validation, and test were 

presented, and the value of 0.98684 was achieved for the complete 

data set, which demonstrates a high level of ANN performance. The 

Genetic Algorithm (GA) was also used to find optimum inputs for 

the target of minimum corrosion rate value. The results showed a 

good agreement between the model prediction and experimental 

values.  
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1-Introduction 

External corrosion of the buried pipelines for 

transmission of water, oil, and gas is caused by 

the exposure of the pipe to the soil. The amount 

of this corrosion has a direct relationship with 

soil corrosivity. Therefore, considering the high 

volume of pipes used in the soil environment, it 

is essential to investigate the corrosion rate of 

transmission pipes as a significant economic 

issue [1]. Many factors are useful in determining 

soil corrosion rates and investigating these 
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factors and providing solutions to reduce them 

and prevent the destruction of buried structures. 

Soil can be considered as a heterogeneous 

environment of pores where the space of its 

holes can be filled with water or gas [1]. 

Alcántara [2] showed that in the comparison 

between soil and other environments such as the 

atmosphere or seawater, due to the extreme 

complexity of the soil environment, it is not 

possible to classify and determine a set of fixed 

factors. The presence of any corrosive ions in the 
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soil significantly increases the corrosion rate of 

the pipes in contact with the soil. Chloride and 

sulfate ions and soil acidity are the most critical 

factors affecting the corrosion rate in buried 

pipelines. These ions increase the corrosion rate 

by decreasing the electrical resistance of the soil. 

Finding a reliable method based on soil 

parameters is very important. This study has 

been carried out to introduce a methodology for 

the prediction of essential parameters affecting 

soil using artificial neural networks and genetic 

algorithms. 

Artificial neural network (ANN) 

Nowadays, the Artificial Neural Network 

(ANN) models are the most capable modeling 

techniques which have been found in many 

different applications of various fields, such as 

civil, IT, Electricity, environmental pollution, 

and corrosion science [4]. ANN method is now 

almost a standard modeling skill based on a 

statistical approach, and it has increased interest 

for the prediction of different types of corrosion 

and has helped to diminish numerous 

experiments, excess finance costs, and waste of 

time. It is a codified numerical computerized 

plan that can model complex dependency 

between promiscuous experimental inputs and 

their relative outputs; also, it is possible to 

reduce the error between them [5-8]. The 

majority of researchers agree that ANN is 

inspired by the behavior of biological neurons, 

and it works like a brain, which is composed of 

small parts called neurons and synapses for 

transferring signals to the neuron [9, 10-15]. A 

group of neurons forms a subsystem, and the 

brain is consisting of subsystems collection. The 

inputs to the neurons are weighted, and these 

weights are revised during learning. The 

fundamental structure of an artificial neural 

network model is concluded of three layers, i.e., 

input, hidden, and output layer, these layers 

work as subsystems and neurons have the same 

function in two networks [5,16]. 

ANNs are trained to recognize linear and 

nonlinear relationships between the inputs and 

output variables in a required problem for a 

given data set [17, 12]. As mentioned above, the 

input layer comprised of a neuron for each input 

variable is considered, and also some hidden 

layers may be added, which consist of any 

number of neurons placed in parallel. The sum 

of the weighted inputs and the bias forms the 

input to the so-called transfer function, which 

transfers input signals into an output. The idea is 

used to perform the learning process called a 

learning algorithm that can modify the synaptic 

weight of the network. When the brain receives 

a provocation, it goes into the neural network for 

analysis by an electrical impulse. The effectors 

convert the electrical signal, which was 

generated into the feedback as system outputs 

[18]. The connections between each layer are 

universally defined in terms of weights and bias 

[11]. A schematic illustration of the ANN 

methodology based on the human nervous 

system is showed in Fig. 1. Usually, one hidden 

layer is supposed; however, by using two or 

more hidden layers, the ANN performance may 

improve significantly. Accordingly, a network 

with two hidden layers shows suitable 

performance. As shown in Fig.2 in each neuron, 

the inputs are linearly combined with a set of 

previously random-defined weights w and the 

bias b. After the data was processed by weight 

and bias, the results are transferred from hidden 

neurons to the output layer utilizing a transfer 

function, which is often nonlinear [9, 12, 19-20]. 

Transfer functions are in the forms of a linear 

and sigmoidal function. The linear transfers 

function, such as Purelin, transforms inputs into 

the neuron in a linear form. Contrary, the 

sigmoidal function facilitates creating a non-

linear connection between neurons and layers, 

which leads to a nonlinear relation between 

input and output. The common types of 

sigmoidal functions are logsig and tansig [6]. It 

was ready to be trained after the instruction of 

the network [15]. The network used the 

information in the training data and then 

assimilated the resulting output with the desired 

one. For this aim, the errors were propagated 

back through the structure. This helps to adapt 

the weights for application to the next record 

that will be processed. This promotion occurred 

over and over as the weights were regularly 

corrected. First of all, the network starts with 

random weights and bias values and executes a 

transfer function that produces a simulated 

output, and the value of training error is 

achieved [11]. Choosing the number of neurons 

in the hidden layers needs excellent attention to 

prevent the overfitting phenomenon in the 

network, which can be caused by too many 

neurons [10]. 
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Fig. 1 A schematic of a multi-layer neural network model [19]. 

 
Fig. 2 Single neuron activity [18] 

 
Fig. 3 different types of transfer functions [25] 

 

 

A variety of formations for ANN structure could 

be supposed, and many combinations for the 

number of layers and neurons in each layer may 

be considered. So, several networks are essential 

to be inspected to find the best results. Trial-and-

error methods are the most appropriate way of 

finding the best number of hidden layers and  

 

 

number of neurons in each hidden layer. In each 

trial, the experience and ability of the 

programmer play an essential role. Stanley [21] 

demonstrated the operation and performance of 

the network that affected how the neurons are 

connected in a network typology. It is common 

to compose a more accurate network; regarding 
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this, the data were divided into training, 

validation, and test group. The validation is used 

to analyze the performances of the ANN, and the 

test set is useful to confirm the performance of 

the selected architecture. There are many 

different training algorithms. The details for 

different training algorithms are given in [22, 

23]. the most usual and conventional models in 

many practical applications are Feedforward 

neural networks [24] 

There are various ways to investigate the 

performance of the ANN model, which will 

discuss in this study. ANNs have been used 

propitiously by several researchers for corrosion 

prediction, which successfully analyzed 

complex systems in all of these studies [25-32]. 

In the present paper, the experimental and 

computational analysis was used to investigate 

the corrosion rate of steel in the soil 

environment, thereby we use the artificial neural 

network – genetic algorithm (ANN-GA) 

approach to optimize each parameter and 

minimize corrosion. The GA that firstly 

introduced by professor Holland [33] is an 

Evolutionary Algorithm (EA), which works on 

Darwin’s theory of natural selection and 

inspired by the nature of living creatures that can 

be used to solve linear and nonlinear 

optimization problems without gradient 

information [34, 35]. The rest of the paper is 

providing the experimental dataset in the 

laboratory.  

2. Experimental procedure 

The metal specimens used in this study were 

DIN ST37 carbon steel with dimensions of 30 × 

23 × 2 mm for weight loss test in a specified 

environment for each test. The chemical 

composition of DIN ST37 steel is measured by 

Optical Emission Spectrometer and presented in 

Table 1.  

The electrolytes used for corrosion tests were 

sodium chloride (NaCl) and sodium sulfate 

(Na2SO4) in one molar concentration. These 

electrolytes are also added to different soil and 

used to reach the moisture content required in 

the resistance test.  The test electrolyte was an 

aqueous solution of NaCl and Na2SO4, clay with 

soil, clay with sand, sand, and washed sand, and 

compositions of an equal portion of each with 

the moisture content of 10, 20, and 30%. All 

were tested after sandblasting, washing, and 

weighing, and the weight loss corrosion tests 

were done for three months. The various 

mechanical, electrolytic, and chemical 

treatments were employed according to ASTM 

G1[36] after the tests for cleaning the samples.  

3. Results and discussion 

The corrosion rate for each sample was 

calculated by applying the equation (1) where W 

is weight loss in milligrams, 𝜌 is metal density 

in g/cm3, A is the area of the sample in cm2, T is 

the time of exposure of the metal sample in 

hours, and K is a constant (here K is 534). It can 

be seen that the corrosion rates depend on 

environments and corrosive ions.  

Corrosion Rate (mpy) =
(𝐾×𝑊)

(𝐴×𝑇×𝜌)
                      (1)   

ANN model 

It is tough and somehow impossible to find a 

mathematical equation between some 

environmental parameters like moisture for 

calculation of the corrosion rate; so, ANN is 

used for this prediction. In the research, the 

program package MATLAB 2018a with the 

Neural Network toolbox was used to formulate 

the artificial neural network and data processing; 

as a result, corrosion rate prediction is achieved. 

As it is mentioned before, the ANN structure 

consists of three layers, input, hidden, and 

output. First, according to the nature and 

purpose of the experiments, Neural network 

inputs and outputs were defined. Having 

different variables such as types of soil (different 

particle sizes), two different salts (molecular 

weight of salt) will affect the corrosion rate; they 

are used as the input for experimental analysis 

and corrosion rate prediction.  

The structure of the ANN model used in this 

study is presented in Fig. 4. In this model, four 

inputs and one output are introduced to build a 

neural network, and a total of 28 series of 

experimental attempts were employed. Table 2 

shows the selected inputs and output parameters 

for the ANN developed in this work. The critical 

point of this study is the use of two types of salt, 

which the ANN model is valid for two salts. 

 
Table 1. Chemical composition of DIN ST37 carbon steel samples. 

C Si Mo S P Ni Cr Mn Cu Fe 

0.112 0.125 0.007 0.03 0.004 0.063 0.078 0.295 0.028 99.02 
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Fig. 4 Typical structure for the ANN model used in this study. 

 

Table2- experimental data for the ANN formation. 

 

 Inputs of ANN Experimental output 

 
Moisture 

(%) 

Particle 

Size 

(NM) 

Salt 

(g/mole) 

Corrosion Rate 

(mpy) 

1 10 93.75 58.44 0.412705 

2 20 93.75 58.44 4.476259 

3 30 93.75 58.44 3.417195 

4 10 93.75 142.04 1.160653 

5 20 93.75 142.04 5.653419 

6 30 93.75 142.04 5.671198 

7 20 2.44 58.44 0.321275 

8 30 2.44 58.44 2.481308 

9 20 2.44 142.04 0.139685 

10 30 2.44 142.04 1.570818 

11 10 375 58.44 5.273731 

12 20 375 58.44 9.793165 

13 30 375 58.44 10.93858 

14 10 375 142.04 1.761297 

15 20 375 142.04 4.925789 

16 30 375 142.04 7.295349 

17 10 234.37 58.44 2.82544 

18 20 234.37 58.44 5.840089 

19 30 234.37 58.44 5.181031 

20 10 234.37 142.04 1.615263 

21 20 234.37 142.04 4.127047 

22 30 234.37 142.04 5.511195 

23 10 188.72 58.44 0.535881 

24 20 188.72 58.44 1.704153 

25 30 188.72 58.44 4.232445 

26 10 188.72 142.04 0.114287 

27 20 188.72 142.04 1.347322 

28 30 188.72 142.04 4.452131 
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The range of variables would be different from 

different natures, so, to avoid the one parameter, 

all of the variables are arranged in the range of 0 

to 1, which is usually called the normalization 

method. These Parameters have a large value 

and enable the ANN to distinguish the 

dependence and communal influence of each 

parameter more efficiently; thus, make a 

desirable assessment of the output. When the 

simulation has been completed for enabling 

better readability and interpretation, it is 

possible to do post-processing in which the 

obtained data is scaled backward in the actual 

range of values. 
Table 3. Boundaries of the input and output 

parameters used for developing the ANN model. 

Inputs Range 

Moisture 10-30 

Particle Size 2.44-375 

Salts Molecular weight 58.44 and 142.04 

Corrosion Rate  0.114287-10.93858  

 Table 3 displays the minimum and maximum 

values that have been used for the normalization 

of parameters. The normalization formula is:  

Xnorm=
(𝑋−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
                                                     (2) 

In which Xnorm is the normalized value, x is the 

actual value, Xmax is the maximum value, and 

Xmin is the minimum value of parameters.  

During training, the process was surveyed by 

evaluating the validation data [37]. As discussed 

earlier, the data from pre-processing were 

randomly divided into three parts, so 70% of 

data were used for training, 15% for validation, 

and 15% for the testing set, respectively [38].  

The performance of the system in each of the 

training, validation, and testing steps is 

calculated by various statistical error formulas. 

In this article, MSE, MAE, and R were used to 

find the best and suitable network for the 

prediction of corrosion rate. These errors were 

determined by: 

Mean Square Error (MSE);  

MSE=
1

𝑛
∑𝑛𝑖=1 (𝑡 − 𝑜)2                                (3)  

Mean Absolute Error (MAE); 

MAE=
1

𝑛
∑𝑛𝑖=1 |𝑡 − 𝑜|                                  (4) 

Where n is the number of data in training, t is 

experiment data, and O is predicted data.  

Correlation Coefficient (R); 

R2=1 −
∑𝑛−1𝑖=1 (𝑡−𝑜)2

∑𝑛−1𝑖=1 (𝑡−𝑚)2
                                     (5) 

In this case, t is the target output value of 

instance i, o is the predicted output value of 

instance i, and m is the mean value of the test 

data set. Thus, the model with the smallest value 

of MAE MSE is chosen as the best model for 

prediction. Also, for the case of R, the closer to 

unity is represented as a suitable model.  

Researchers agree that the hidden layer act as 

feature detectors and only one hidden layer gives 

the right answer. However, universal principles 

suggest that a network with a single hidden layer 

with a large number of neurons cannot interpret 

any input-output structure accurately. So, more 

than one hidden layer can be used to reach a 

trustable answer. Thus, for this purpose, two 

hidden layers were employed. One of the most 

crucial factors to reach a better ANN answer is 

to find the best number of neurons in each 

hidden layer. If too few numbers of neurons are 

selected, the ANN is not capable of felicitous 

input-output mapping; on the contrary, if too 

many neurons are used, overfitting may occur, 

and a more extended training period will be 

expected [19, 10]. Several networks were 

designed with trial and error strategies to find a 

suitable number of neurons in the hidden layer. 

Also, the network was trained for each number 

of hidden neurons (each network structure), to 

receive the least error and fill the best network 

[39].  

The essential parameters for finding the 

optimum structure are the number of hidden 

layers, the number of neurons in each hidden 

layer, the transfer function, and the training 

function. Therefore, to reach the best structure, 

several models were tested, and the most 

suitable transfer function was selected for the 

best training algorithm model. In this work, nine 

different training algorithms from the 

commercial application (MATLAB) were 

utilized to set up the network and three different 

transfer functions (tansig, logsig, and purelin), 

which were examined for each training 

algorithm. The nine training algorithms used in 

this study are listed in Table 4. During the 

training and testing processes, the performance 

of the network for the structures with different 

types of training algorithms and transfer 

functions was tested, and the error between the 

simulated and experimental output is calculated 

until the best transfer functions, and training 

algorithms will be understood. 



A. Akhtari-Goshayeshi et. Al., Journal of Advanced Materials and Processing, Vol. 7, No. 4, 2019, 30-43 36 

Table4.The nine training algorithm and their 

symbol. 

Training Algorithm symbol 

Levenberg–Marquardt 

backpropagation 
LM 

BFGS quasi-Newton 

backpropagation 
BFG 

Resilient backpropagation RP 

Scaled Conjugate Gradient SCG 

Conjugate Gradient With 

Powell/Beale Restarts 
CGB 

Fletcher- Powell Conjugate Gradient CGF 

Polak- Ribiere Conjugate Gradient CGP 

One-step Secant OSS 

Variable Learning Rate 

Backpropagation 
GDX 

There are few studies which focused on a 

comparison between different training algorithm 

and transfer functions in corrosion science. 

Ayegba et al. used different training algorithms 

such as; Gradient descent with variable step size 

and momentum term (GDX); Levenberg 

Marquardt (LM) algorithm and Resilient back-

propagation (RP) to build the network and also 

used three different transfer functions (tansig, 

logsig, and purelin). ANN model used to predict 

the effect of a vertical 90 °bend on an air–

silicone oil mixture over a wide range of flow 

rates.  Finally, the best structure for ANN was 

attained, and the prediction was completed [7]. 

 

 
 

Fig. 5 Comparison of different number of hidden layers 

 

 
Fig. 6 Number of neurons in each layer used for neural network architecture 
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Taghavifar et al. tested five prominent training 

BP methods, Levenberg–Marquardt back-

propagation, Gradient descent back-

propagation, BFG Squasi-Newton back-

propagation, Resilient back-propagation, and 

Bayesian regulation back-propagation with 

different transfer function. Finally, the feed-

forward Artificial Neural Network (ANN) with 

backpropagation (BP) learning algorithm is used 

to estimate the rolling resistance of the wheel 

[16]. 

 

3.2 GA model 

A binary GA toolbox developed by the 

University of Sheffield (“USGA” toolbox for 

short after this) is widely used in engineering 

optimization [35]. The GA frequently changes 

the population of particular solutions. The 

parents who were selected randomly by GA, at 

each progression, at the present population and 

used them for producing next-generation 

children [14]. The despicable species are 

eliminated through competition. The GA applies 

three operators, selection, crossover, and 

mutation, to transfer superior species to the next 

generation. The operator that is responsible for 

choosing the parents to make the next generation 

is selected [33]. Fitness function plays an 

essential role in the efficiency of GA for 

optimization. All the required variables should 

be added to the fitness function and given proper 

weightings [37]. In this paper, the corrosion rate 

is considered as the fitness function. Variables 

should be converted into the original value and 

went out to form the normalized mode and used 

in the GA. The results of GA will be shown in 

the next step of this paper. 

 

4.1 ANN Results 

To find the optimal neurons in every hidden 

layer, we used the trial and error method. For 

this purpose, 20 different neurons in each layer 

were tried, and the error values were 

investigated. In Fig. 5, the MSE and MAE of 

training samples for a different number of 

neurons in hidden layer with tansig transfer 

function and Levenberg–Marquardt BP 

algorithm are shown, error values decrease 

considerably when the number is five in each 

hidden layer and shows the best performance. 

Therefore, The ANN model used in this work 

consists of 3-5-5-1 in each layer, as illustrated in 

Fig.6.  

After finding the best neurons’ number, all the 

nine algorithms were applied in 3 different 

transfer functions. Fig. 7a-c demonstrates the 

performance results for three transfer functions 

with different algorithms. It is clear that the 

tansig transfer function shows the least error 

values and seems to be suitable for the network. 

The objective function provides the basis for 

performance evaluation and network algorithm 

selection. Moreover, finding the best algorithm 

for the prediction of corrosion rate is intended, 

so to have a better comparison for this algorithm, 

the error value for the algorithm is inspected in 

different transfer functions. Fig 8. Shows a 

comparison between MSE and MAE values of 

levenberg – marquardt (lm) in 3 types of the 

transfer function, the lm algorithm has resulted 

in the best answer in all the three transfer 

functions. As can be seen, by the small values of 

MAE and MSE, it is observed that the ANN 

model, based on the LM algorithm with tansig 

transfer function, performs well. It is in 

agreement with the literature, which indicates 

the fastest and less memory consumption in 

levenberg – marquardt training algorithm [23]. 

Because of its compatibility, lm is the most 

popular algorithm around the world, and it is 

frequently used by several researchers [7, 16, 19, 

14, 38, 39].  
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Fig. 7 Performance of ANN models with a different algorithm for a) logsig, b) purelin, c) tansig transform 

function. 
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Fig. 8 Performance of ANN models with the different transfer functions for leverberg algorithm. 

 

The training was conducted separately for each 

group. Being successfully proved in this study, 

the Levenberg–Marquardt algorithm with 

Hyperbolic tangent sigmoid transfer function 

provided the best results in training with the 

lowest MSE and MAE compared to the other 

methods. To have a computationally efficient 

ANN and achieve a better architecture, the MSE 

of 5.31×10-16 was selected as the optimal 

structure for the prediction. In Fig. 9, the MSE 

variations are shown for the training, validation, 

and test the samples during the number of 

epochs. Fig. 10 shows the measured (input) data 

and the simulation result of one of the 28 

networks. The representation accuracy of neural  

 

 

networks can be implied by the values of R2 with 

1, 0.95685, 0.96134, and 0.98684 for training, 

validation, and test and for the complete data set, 

respectively. The target is the corrosion rate, 

which is determined by coupons exposed to 

simulating environments with laboratory 

corrosion chambers, and Output is the value 

obtained from the prediction model. The Y=T 

line is where the y-axis value equals the target 

value. The R values are used to find the 

relationship between outputs and targets, and it 

is a useful indicator to check the prediction 

efficiency of the ANN model. According to the 

R values in each step, the coefficient of 

determination values shows the acceptable 

accuracy.  

 
Fig. 9 Regression result of neural network training for MSE of all epochs. 
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Fig. 10 The outputs of the ANN model and experimental to measured corrosion rate using training, validation, 

test, and the complete data sets. 

 

 
Fig. 11 Error-values for all modeling steps. 
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Fig. 12 Experimental and ANN predicted results for 28 case numbers. 

 

 

 
Fig. 13 Best fitness plot for corrosion rate (a) and Genealogy plot of optimization with GA (b). 

 

In Fig.11 the error graph for all modeling steps 

was presented. The ANN network completely 

follows the measured values indicating that the 

network has managed to imitate the corrosion 

rate fully. For all qualified results, a Root Mean  

Square Error (RMSE) after the simulation was 

calculated. To investigate the accuracy of the  

 

predicted corrosion rate, we put the predicted 

and experimental data set in one chart according 

to 28 tests, as shown in Fig. 12. The prediction 

model was in perfect agreement with the actual 

results.  

 

 

(b) 

(a) 
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4.2 GA Results 

After acquiring the best number of neurons in 

hidden layers and testing the whole algorithms 

in three transfer functions to find the lowest 

error, our optimized ANN model was ready to 

pair with GA and acted as the fitness function to 

approach the optimal amount to reduce the 

corrosion rate of ST37 metal. Optimum inputs 

for minimum corrosion rate for sodium sulfate 

salt in the soil are 29.977 (%) and 8.626 (nm) for 

moisture and Soil particle size, respectively. 

Fig 13. Shows the best fitness plot gained from 

GA and explains the stop in the improvement of 

future generation and the reproduction in GA 

after 51 iterations. After optimization, the final 

optimum corrosion rate based on the plot is 10.9 

%. It also showed that GA initially guessed a 

number and development in the other guesses 

has been observed. In Fig14. The Genealogy of 

the individual line from one generation to the 

other until 50 generations drawn by GA is 

presented. Red lines indicate mutation children, 

and blue lines show across over the section, and 

blackline indicates elite individuals. 

5.Conclusion  

Corrosion rates for St37 steel in three classes of 

soil environments with different soil particles 

size in the presence of NaCl and Na2SO4 as salt 

solutions were measured. Moisture content in 

the soils was fixed at 10, 20, and 30 %. The ANN 

model is used to predict the corrosion rate of 

ST37 metal in some corrosive environments, 

while the genetic algorithm is being employed to 

optimize the model. ANN structure was 

successfully trained, including two hidden 

layers and five neurons in each layer. The results 

showed that the predicted model had a good 

agreement with the actual results. Finally, the 

error's value for ANN was achieved as follows: 

the MSE value of 5.31×10-16, the MAE value of 

1.63×10-7, and the value of R2 was 0.98684. 

Therefore, the corrosion rate, including the 

effecting parameters, can be anticipated with a 

high degree of accuracy by knowing the values 

of the Input data using ANNs. Results from GA 

indicated the optimum amount of variables for 

having the lowest corrosion rate after 51 

generations.  
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