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Abstract
An efficient and mild synthesis of quinoxalines including cyclo-condensation of 1, 2-phenylenediamine 
and 1, 2-diketonesin the presence of1mol% catalytic amount of SnO2 nanoparticles (1 mol%) in water at 
room temperature is established. On the whole, this study introduced at this point is substantial in terms of 
using water as solvent, low reaction time(5 to 10 minutes), high yields of products (85-88%), reusability of 
catalyst(three cycles), eco-friendliness, effortlessness of performance and it displays along the line of green 
chemistry.
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INTRODUCTION
Lately, being focused on green chemistry 

by using environmentally mild reagents 
and conditions is one of the most attractive 
improvements in synthesis of broadly applied 
organic compounds. Therefore, the use of water 
as a favorable solvent for organic reactions has 
received significant attention [1-3]. Water is a 
valuable solvent in many methods and carrying 
out organic reactions in this medium is of great 
interest [4]. It is certainly the most low-cost among 
numerous solvents applied in organic synthesis. 
The absence of explosive, inflammable, mutagenic 
and carcinogenic properties is a satisfactory 
aspect of water in laboratories. Additionally, water 
is considered as one of the appropriate solvents 
from an eco-friendly point of opinion [5].

Due to developing green concerns, the 
progress of clean synthetic processes has become 
essential and serious investigation. For this reason, 

heterogeneous organic reactions have many 
advantages, for example recycling, comfort of 
handling separation and eco-friendly safe removal 
[6, 7].

Quinoxalines represent a substantial 
category of nitrogen heterocyclic compounds as 
they constitute valuable intermediates in organic 
synthesis and are appropriate dyes [8]. Some 
of them show biological activities containing 
antiprotozoal, anti-bacterial, anti-HIV, anti-
inflammatory, anti-viral, antidepressant, 
anti-cancer and as kinase inhibitors [9-27]. 
In addition, they were displayed to be NMDA 
receptor antagonist, PDGF-RTK inhibitor, 
IL-8 receptor antagonist and5-HT3receptor 
antagonist in the similar mode [28-33]. Several 
synthetic approaches and catalysts have been 
studied for the preparation of quinoxalines 
such as 6-amino-2,3-dichloroquinoxaline 
loaded on AMEBA resin [34], lead oxide 
[35], (NH4)6Mo7O24.4H2O [36], [PBBS] and 
[TBBDA] [37], Zr(OTf)4 [38], silica bonded 

http://creativecommons.org/licenses/by/4.0/.
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S-sulfonic acid [39], solid-phase synthesis on 
SynphaseTM Lanterns [40], nano-flake ZnO 
[41],[MIMPS]3PW12O40, [TEAPS]3PW12O40 [42], 
Basolites [43] and Porous carbons [44].

The investigation of metal oxides has attracted 
the consideration of materials experts because 
of their mechanical, electrical, magnetic, optical, 
catalytic suitable relations [45] and the removal 
of toxic metals and dyes [46], which make them 
scientifically valuable. The efficacy of metal 
nanoparticles as reagents or catalysts in chemistry 
has remarkable potential in organic synthesis and 
materials science [47-50]. Tin oxide is a significant 
material owing to its properties for example strong 
physical and chemical interaction with adsorbed 

species, low operating temperature, high degree 
of transparency in the visible spectrum and 
strong thermal stability in air (up to 500 oC) [51]. 
Furthermore, tin oxide is broadly applied in 
electrochemical properties [52] and catalysis field 
[53-58].

As part of our efforts to investigate the 
usefulness of nano metal oxide catalysts for 
the synthesis of organic and heterocyclic 
compounds [53-63], we report an efficient 
process for the synthesis of α quinoxalines from 
the cyclo-condensation reaction between 1, 
2-phenylenediamine and 1, 2-diketones by using 1 
mol% aqua mediated SnO2 nanoparticles at room 
temperature (Fig. 1). 

 

Fig. 1. Aqua mediated SnO2 nanoparticles catalyzed synthesis of quinoxalines. 

  

Fig. 1. Aqua mediated SnO2 nanoparticles catalyzed synthesis of quinoxalines.

Table 1. Evaluation of catalytic activity and solvent in the synthesis of target molecule 3e.a 

 

Entry Solvent Catalyst loading (mol%) Time (min) Yield (%)b 

1 H2O 1 5 88 

2 C2H5OH  1 10 84 

3 CH2Cl2 1 10 83 

4 CH3CN 1 10 82 

5 H2O 0.5 10 84 

6 H2O 2 10 83 

7 H2O 3 10 82 

aReaction condition: 1,2-phenylenediamine (1 mmol; 0.108 g), phenanthrene-9,10-dione (1 mmol; 0.208 g), solvent (2 mL), room temperature; 

b Isolated yield.     

 

  

Table 1. Evaluation of catalytic activity and solvent in the synthesis of target molecule 3e.a
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MATERIALS AND METHODS
General methods

SnO2 nanoparticles were purchased from 
commercial centers and characterized by using 
various techniques [53-55, 63]. All reagents were 
purchased from Merck and Aldrich and applied 
without more purification. All solvents were 
reagent grade. All yields refer to the isolated 
products after purification. The selected products 
were identified by comparison with authentic 
samples and by using spectroscopic data include 
FT-IR spectra, 1H NMR and 13C NMR analyses and 
melting point. FT-IR spectra were recorded on FT-
IR Bruker (WQF-510) spectrometer. 1H NMR and 
13C NMR spectra were recorded on Bruker DRX‐400 
MHz by using TMS as the internal standard. All 
melting points were taken on a Thermo Scientific 
apparatus and were uncorrected. TLC was attained 
on aluminum sheets silica gel F254.

   
General procedure for the synthesis of quinoxalines 
by using aqua mediated SnO2 nanoparticles  

To a mixture of 1, 2-phenylenediamine (1.0 
mmol) and 1, 2-diketones (1.0 mmol) was added 
SnO2 nanoparticles (1 mol%) in H2O (2 mL). The 
mixture was stirred at room temperature for the 
known time (Table 2). The progress of the reaction 
was checked by TLC (n-hexane/ethyl acetate; 5 : 
2). After completion of the reaction, water was 
removed and the product was heated in ethanol. 
SnO2 nanoparticles was filtered (the product 
was soluble in hot ethanol and the catalyst was 
insoluble). Finally, the crude product was purified 

by recrystallized from ethanol to afford the pure 
product.

Spectral data for selected products
2, 3-Diphenylquinoxaline (Table 2, 3a): Yellow 

crystalline solid, M.p.: 129-131 oC; Yield: 86%; FT-
IR (KBr) (υmax, cm-1): 2956, 1695, 1460, 1377; 1H 
NMR (400 MHz, DMSO-d6): δ = 7.50-7.67 (dd, 4H, 
J1 = 16 Hz and J2 = 8.0 Hz, Ar–H), 7.92-7.94 (d, 2H, J 
= 8.0 Hz, Ar–H), 7.95-7.99 (dd, 4H, J1= 16 Hz and J2 
= 8.0 Hz, Ar–H), 8.02-8.04  (d, 2H, J =  8.0 Hz, Ar–H), 
8.69-8.71 (d, 2H, J = 8.0 Hz, Ar–H); 13C NMR (100 
MHz, DMSO-d6): 148.5, 146.3, 131.2, 131.1, 130.1, 
129.5, 129.1, 127.7. 

Dibenzo[a,c]phenazine (Table 2, 3e): White 
crystalline solid, M.p.: 225-228 oC; Yield: 88%; FT-
IR (KBr) (υmax, cm-1): 3051, 1601, 1475, 1354, 1221; 
1H NMR (400 MHz, DMSO-d6): δ = 7.73-7.75 (d, 
2H, J = 8.0 Hz, Ar–H), 7.76-7.82 (dd, 2H, J1 = 16 Hz 
and J2 = 8.0 Hz, Ar–H), 7.84-7.88 (dd, 2H, J1= 16 Hz 
and J2 = 8.0 Hz, Ar–H), 8.31-8.36 (dd, 2H, J1= 16 Hz 
and J2 = 8.0 Hz, Ar–H), 8.51-8.56 (d, 2H, J =  8.0 Hz, 
Ar–H), 9.38-9.41 (d, 2H, J = 8.0 Hz, Ar–H); 13C NMR 
(100 MHz, DMSO-d6): 122.9, 126.2, 127.9, 129.4, 
129.7, 130.2, 132.0, 142.2, 142.4, 146.3.  

RESULTS AND DISCUSSION
Firstly, we studied the activity of SnO2 

nanoparticles in the cyclo-condensation of 
1, 2-phenylenediamine and phenanthrene-9, 
10-dione as a model reaction (Table 1). To our 
enchantment, the expected product 3e was 
achieved in 88% isolated yield after5 minutes in 

Table 2. Synthesis of quinoxalines catalyzed by SnO2nanoparticles.a,b 

 
   

   

aReaction condition: 1,2-phenylenediamine (1 mmol; 0.108 g), 1,2-diketone (1 mmol), SnO2 nanoparticles (1 mol%), H2O (2 mL), room 

temperature; b Isolated yield. 

 

  

Table 2. Synthesis of quinoxalines catalyzed by SnO2nanoparticles.a,b
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the presence of a 1 mol% catalytic amount of Aqua 
mediated SnO2 nanoparticles at room temperature 
(Table 1, entry 1).No desired product was 
synthesized in the absence of SnO2 nanoparticles. 

It is identified that the reaction medium plays 
a significant role in the catalytic reaction. The 
investigation of the effect of the nature of solvent 
for this reaction by using SnO2 nanoparticles 
was performed at room temperature in several 
solvents (Table 1, entries 1-4). The highest reaction 
activity was attained in the system by using water 
as a solvent in comparison to other solvents 
under same reaction conditions. The above 
model reaction was achieved under solvent-free 
condition with the SnO2 nanoparticles to provide 
low yield. 

Catalyst concentration is an important factor 
that fully affects the reaction rate and product 
yield. To optimize the catalyst loading, 0.5 mol%, 
2 mol% and 3 mol% of SnO2nanoparticleswas 
studied but the yields were not appropriate 
(Table 1, entries 5-7). A 1 mol% loading of SnO2 
nanoparticles was satisfactory to push the reaction 
forward and higher amounts of catalyst did not 
increase the yields meaningfully. 

We next studied the effect of temperature 
on the rate of model reaction. For this aim, the 
reaction was performed in higher temperatures 
and under reflux condition. But, by increasing 
the temperature unsuccessful to improve the 

reaction rate significantly. As it happens, higher 
temperatures were lowered the product yield 
rather, attended by approximately impurities. 
Moreover, the appropriate result was attained 
with a 1 : 1 molar ratio for 1, 2-phenylenediamine 
and 9, 10-phenantrolinedione.

The SnO2 nanoparticles catalyst could 
be recycled and reused without decrease of 
catalytic activity. At the end of the reaction, hot 
ethanol was added to the reaction mixture and 
SnO2 nanoparticles was filtered (the product 
was soluble in hot ethanol and the catalyst was 
insoluble), washed three times with hot ethanol, 
dried at 80 oC for 120 minutes, and reused. The 
recycled catalyst was used to the synthesis of 3e 
and the yield was reserved at 86-88% via three 
cycles of catalyst recovering.

To consider the scope and overview of the 
method, a variety of 1, 2-diketones bearing 
electroneutral and electron-releasing groups 
were reacted with 1, 2-phenylenediamine as 
nucleophilic substrates under optimized reaction 
conditions and the results are showed in Table 2. 
No apparent electronic effect of the substituents 
of 1, 2-diketones was obvious. The corresponding 
quinoxalines were produced efficiently with facility 
and suitable yields (85-88%).

The proposed mechanism for this 
reaction is displayed in Fig. 2 [37-39]. Initially, 
SnO2nanoparticles as a catalyst activates the 

 

Fig. 2. Suggested mechanism for the synthesis of quinoxalines catalyzed by SnO2 nanoparticles. 

 

Fig. 2. Suggested mechanism for the synthesis of quinoxalines catalyzed by SnO2 nanoparticles.
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carbonyl functional group of 1, 2-diketones 2 to 
give intermediate 2’. At that point, nucleophilic 
attacks of 1, 2-phenylenediamine 1 on the 
intermediate 2’ to provide intermediate 4. The 
condensation of intermediate 4 leads to the form 
of intermediate 5 via elimination of one molecule 
of water. In the next step, intra-cyclization of 
intermediate 5 via nucleophilic attack of amine 
group on the activated carbonyl functional group 
to afford intermediate 6 which rearranges through 
elimination of second molecule of water to 
quinoxalines 3.

To display the noteworthy properties of our 
investigation, we have compared our result with 
the known data from the other works for the 
synthesis of 2, 3-diphenylquinoxaline (Table 2, 3a). 
For comparison, this target molecule was selected, 
as shown in Table 3. No use of hazardous solvent, 
short reaction time and high yields of target 
product make this process as a valuable method 
for the synthesis of library of quinoxalines.

CONCLUSION
In summary, we have introduced a facile and 

eco-friendly mild process for the synthesis of 
quinoxalines. This cyclo-condensation reaction 
between 1, 2-phenylenediamine and 1,2-diketones 
is efficiently catalyzed by aqua mediated SnO2 
nanoparticles at room temperature. Easy 
operation, improved rates, high isolated yields of 
the pure products and benign reaction conditions 
are important advantages of the procedure 
presented here. More uses of SnO2 nanoparticles 

on the extension of this approach are continuing 
in our group.

SUPPORTING INFORMATION 
The supporting information includes spectral 

images of FT-IR, 1H NMR and 13C NMR of selected 
product. 
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