تعداد نشریات | 418 |
تعداد شمارهها | 10,005 |
تعداد مقالات | 83,622 |
تعداد مشاهده مقاله | 78,340,937 |
تعداد دریافت فایل اصل مقاله | 55,384,186 |
The Study of Photocatalytic Degradation Mechanism under Visible Light Irradiation on BiOBr/Ag Nanocomposite | ||
Iranian Journal of Catalysis | ||
مقاله 6، دوره 10، شماره 4، اسفند 2020، صفحه 307-317 اصل مقاله (1.29 M) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Marzieh Yaghoubi-berijani1؛ bahram bahramian* 1؛ Solmaz Zargari2 | ||
1Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran | ||
2University of Applied Science and Technology (UAST), Ghand Center, Karaj, Iran. | ||
چکیده | ||
Due to the pollution of dyeing and textile industry wastewaters in different colors and the need to remove these pollutants from the wastewaters, it is necessary to study and develop effective and efficient technology solutions required. To remove dye from aqueous solutions, photodegradation is employed as an effectively simple way. Thus, the BiOBr photocatalyst was chemically made by synthesis using a facile method. To enhance its photocatalytic activity, the synthesized BiOBr nanoplates were then functionalized with Ag NPs forming the modified BiOBr/Ag photocatalyst. The BiOBr/Ag nanocomposite was synthesized with different percentages of Ag to determine its optimized percentage in the photocatalytic process. The characterization techniques of PL, DRS, XRD, EDX, SEM, FT-IR, and Raman were used to confirm the prepared samples. The power-down white light lamp was used in the photocatalytic process, which showed good degradation. The photocatalytic activity of prepared BiOBr/Ag was investigated by the degradation of the 2,4-dichlorophenol, methyl orange, and rhodamine B. The effective separation and inhibited recombination of photo-generated electron-hole pairs resulted from the high photocatalytic activity. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Nanocomposite؛ Bismuth oxybromide؛ BiOBr/Ag؛ Photocatalytic process | ||
مراجع | ||
[1] Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Environ. Pollut. 252 (2019) 352-365.
[2] E.N. Zare, A. Motahari, M. Sillanpää, Environ. Res. 162 (2018) 173-195.
[3] L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Environ. Sci.: Nano. 1 (2014) 90-112.
[4] N. Assi, P.A. Azar, M.S. Tehrani, S.W. Husain, J. Iran. Chem. Soc. 13(9) (2016) 1593-1602.
[5] H. R. Pouretedal, A. M. Sohrabi, J. Iran. Chem. Soc. 13(1) (2016) 73-79.
[6] Y. Mi, M. Zhou, L. Wen, H. Zhao, Y. Lei, Dalton Trans. 43 (2014) 9549-9556.
[7] X. Cao, Z. Lu, L. Zhu, L. Yang, L. Gu, L. Cai, J. Chen, Nanoscale. 6 (2014) 1434-1444.
[8] H. Zhang, Y. Yang, Z. Zhou, Y. Zhao, L. Liu, J. Phys. Chem. C. 118 (2014) 14662-14669.
[9] Z. Jiang, B. Huang, Z. Lou, Z. Wang, X. Meng, Y. Liu, X. Qin, X. Zhang, Y. Dai, Dalton Trans. 43 (2014) 8170-8173.
[10] C. Bi, J. Cao, H. Lin, Y. Wang, S. Chen, RSC Adv. 6 (2016) 15525-15534.
[11] M. Zahedifar, M. Shirani, A. Akbari, N. Seyedi, Cellulose. 26(11) (2019) 6797-6812.
[12] Q. T. H. Ta, S. Park, J. S. Noh, J. Colloid Interface Sci. 505 (2017) 437-444.
[13] S. Naghizadeh-Alamdari, A. Habibi-Yangjeh, M. Pirhashemi, Appl. Surf. Sci. 40 (2015) 111-120.
[14] J. Manna, T. P. Vinod, K. Flomin, R. Jelinek, J. Colloid Interface Sci. 460 (2015) 113-118.
[15] J. Lv, Q. Zhu, Z. Zeng, M. Zhang, J. Yang, M. Zhao, W. Wang, Y. Cheng, G. He, Z. Sun, J. Phys. Chem. Solids. 111 (2017) 104-109.
[16] X. F. Zhang, Z. G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci.17 (2016) 1534-1567.
[17] S. Gurunathan, J.H. Park, J.W. Han, J. Kim, H. Int. J. Nanomed.10(2015) 4203-4223.
[18] W. R. Li, X.B. Xie, Q. S. Shi, H. Y. Zeng, O. Y. You-Sheng, Y.B. Chen, Appl. Microbial. biotechnol. 85 (2010) 1115-1122.
[19] X. Zhu, X. Liang, P. Wang, Y. Dai, B. Huang, Appl. Surf. Sci. 456 (2018) 493-500.
[20] Y. C. Yao, X. R. Dai, X. Y. Hu, S. Z. Huang, Z. Jin, Appl. Surf. Sci. 387 (2016) 469-476.
[21] M. Yaghoubi-berijani, B. Bahramian, S. Zargari, Res. Chem. Intermed. 46 (2020) 197–213.
[22] R. Saraf, C. Shivakumara, S. Behera, N. Dhananjaya, H. Nagabhushana, RSC Adv. 5 (2015) 9241-9254.
[23] A. Esmaeili, M. H. Entezari, RSC Adv. 5 (2015) 97027-97035.
[24] L. Zhang, Z. Wu, L. Chen, L. Zhang, X. Li, H. Xu, H. Wang, G. Zhu, Solid State Sci. 52(2016) 42-48.
[25] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chem. Eng. J. 185 (2012) 91-99.
[26] S. Yao, R. Zheng, R. Li, Y. Chen, X. Zhou, J. Luo, J. Taiwan Inst. chem. Eng. 100 (2019) 186-193.
[27] Y. T. Prabhu, K. V. Rao, V. S. S. Kumar, B. S. Kumari, World J. Nano Sci. Eng. 4 (2014) 21-28.
[28] A. B. Andrade, N. S. Ferreira, M. E. Valerio, RSC Adv. 7(43) (2017) 26839-26848.
[29] H. Cui, Y. Zhou, J. Mei, Z. Li, S. Xu, C. Yao, J. Phys. Chem. Solids. 112 (2018) 80-87.
[30] H. Zhang, C.G. Niu, S.F. Yang, G.M. Zeng, RSC Adv. 6 (2016) 64617-64625.
[31] S. Hu, L. Jiang, Y. Tu, Y. Cui, B. Wang, Y. Ma, Y. Zhang, J. Taiwan Inst. Chem. Engrs. 86 (2018) 113-119.
[32] S. Lee, Y. Park, D. Pradhan, Y. Sohn, J. Ind. Eng. chem. 35 (2016) 231-252.
[33] H. Liu, Y. Hu, Z. Zhang, X. Liu, H. Jia, B. Xu, Appl. Surf. Sci. 355(2015) 644-652.
[34] B.H. Bielski, D.E. Cabelli, Active oxygen in chemistry. Springer, Dordrecht (1995) 66-104.
[35] N. Omrani, A. Nezamzadeh-Ejhieh, Sep. Purif. Technol. 235 (2020) 116228-116232.
[36] C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39(11) (2010) 4206-4219.
[37] M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 318 (2016) 291-301.
[38] G. Jiang, R. Wang, X. Wang, X. Xi, R. Hu, Y. Zhou, S. Wang, T. Wang, W. Chen, ACS Appl. Mater. Interfaces. 4(9) (2012) 4440-4444.
[39] C. Yu, C. Fan, X. Meng, K. Yang, F. Cao, X. Li, React. Kinet. Mech. Catal. 103 (2011) 141-151.
[40] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Y. Huang, Z. Chen, H. Li, Appl. Catal. B Environ. 188(2016) 376-387.
[41] Y. Guo, J. Zhang, D. Zhou, S. Dong, J. Mol. Liq. 262 (2018) 194-203. | ||
آمار تعداد مشاهده مقاله: 398 تعداد دریافت فایل اصل مقاله: 378 |